

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2016 Society for Industrial and Applied Mathematics
Vol. 45, No. 2, pp. 548–574

MAINTAINING SHORTEST PATHS UNDER DELETIONS IN
WEIGHTED DIRECTED GRAPHS∗

AARON BERNSTEIN†

Abstract. We present an improved algorithm for maintaining all-pairs (1 + ε) approximate
shortest paths under deletions and weight-increases. The previous state of the art for this problem is
total update time ˜O(n2√m/ε) over all updates for directed unweighted graphs [S. Baswana, R. Har-

iharan, and S. Sen, J. Algorithms, 62 (2007), pp. 74–92], and ˜O(mn/ε) for undirected unweighted
graphs [L. Roditty and U. Zwick, in Proceedings of the 45th FOCS, Rome, Italy, 2004, pp. 499–508].
Both algorithms are randomized and have constant query time. Very recently, Henzinger, Krinninger,
and Nanongkai presented a deterministic version of the latter algorithm [M. Henzinger, S. Krinninger,

and D. Nanongkai, in IEEE FOCS, 2013, pp. 538–547]. Note that ˜O(mn) is a natural barrier because
even with a (1 + ε) approximation, there is no o(mn) combinatorial algorithm for the static all-pairs
shortest path problem. Our algorithm works on directed weighted graphs and has total (randomized)

update time ˜O(mn logR/ε) where R is the ratio of the largest edge weight to appear at any point
in the update sequence to the smallest such weight. (As with previous algorithms, our query time is

constant.) Technically, the running time is ˜O(mn logR/ε) + O(Δ), where Δ is the total number of
updates; the same O(Δ) term is also implicitly present in all other algorithms for the problem, since
a constant time per update is clearly unavoidable. Note that logR = O(log(n)) as long as weights are

polynomial in n; thus, we effectively expand the ˜O(mn/ε) total update time bound from undirected
unweighted graphs to directed graphs with polynomial weights. This is in fact the first nontrivial al-
gorithm for decremental all-pairs shortest paths that works on weighted graphs (previous algorithms
could only handle small integer weights). By a well-known reduction from decremental algorithms
to fully dynamic ones [M. Henzinger and V. King, in Proceedings of the 36th FOCS, Milwaukee, WI,
1995, pp. 664–672], our improved decremental algorithm leads to improved query-update trade-offs
for fully dynamic (1 + ε) approximate all-pairs shortest paths (APSP) algorithms in directed graphs.

Key words. graph algorithms, dynamic algorithms, approximation, shortest paths

AMS subject classification. 05C85

DOI. 10.1137/130938670

1. Introduction. Dynamic graphs are used to model settings where we need to
maintain some information about a graph that is changing over time. We focus on
the problem of maintaining shortest paths in a graph whose edges are being inserted
and deleted. More formally, the objective of the dynamic single source shortest path
problem (SSSP) is to efficiently process an online sequence of update and query op-
erations. An update can insert or delete an edge, or change the weight of an existing
edge. A query asks for the distance in the current graph from the source to a given
vertex v. In dynamic all-pairs shortest paths (APSP), the query can ask for the dis-
tance between any pair vertices. A dynamic algorithm is said to be incremental if
the updates are only insertions and weight-decreases, decremental if they are only
deletions and weight-increases, and fully dynamic if all updates are allowed.

∗Received by the editors September 26, 2013; accepted for publication (in revised form) July 1,
2015; published electronically April 27, 2016. This publication is a full length version of an extended
abstract published in STOC 2013 [5]. This work was supported by the NSF graduate research
fellowship (GRFP).

http://www.siam.org/journals/sicomp/45-2/93867.html
†Department of Computer Science, Columbia University, New York, NY, 10027 (bernstei@

gmail.com).

548

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sicomp/45-2/93867.html
mailto:bernstei@gmail.com
mailto:bernstei@gmail.com

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 549

1.1. Existing algorithms. The efficiency of dynamic shortest path algorithms
is judged by two parameters: query time and update time. One can achieve many
different trade-offs between these, but typically the goal is to minimize update time
while keeping the query time polylogarithmic. The naive algorithm simply recomputes
shortest paths from scratch after every update; the query time is O(1), while the

update time is Õ(m) for SSSP and Õ(mn) for APSP.1

The classic dynamic shortest path problem is maintaining a shortest path tree
under deletions. In 1981, Even and Shiloach [8] gave an algorithm with total update
time O(mn) in undirected unweighted graphs (amortized update time O(n)). King
[12] later extended this work to directed graphs. Unfortunately, the results for the
single source problem essentially stop here. Nothing nontrivial is known for weighted
graphs, and nothing nontrivial is known for the fully dynamic case. Moreover, Roditty
and Zwick showed a reduction from boolean matrix multiplication to decremental
SSSP in undirected unweighted graphs, explaining the lack of progress for beating
Õ(mn) total update time [16]. The only progress we know of is for the specific case
of (1 + ε) approximate decremental SSSP in unweighted, undirected graphs [6]: here
we can achieve total update time o(n2+ε) for any fixed ε > 0.

In contrast to dynamic SSSP, there are a large number of papers on dynamic
APSP algorithms that beat the trivial Õ(mn) total update time, of which we de-
scribe just a few. For the fully dynamic case, a long string of results culminated in
a breakthrough paper of Demetrescu and Italiano [7], which showed that in general

graphs we can maintain constant query time while achieving Õ(n2) amortized update
time. Sankowski used matrix multiplication in unweighted graphs to achieve random-
ized update time O(n1.932) and randomized query time O(n1.288) [17]. If we allow a
(2+ε)-approximation, Bernstein showed in 2009 [3] that for undirected graphs we can
achieve an O(log log log(n)) query time with amortized update time o(mnε logR/ε)
for any fixed ε > 0; R is the ratio between the largest and the smallest edge weights.

In the decremental setting edges are never inserted into the graph, so for un-
weighted graphs at least, the number of updates is finite. As such, it is easier to
analyze this setting not in terms of amortized update time but in terms of the total
update time over all deletions (in unweighted graphs, this is just m times the amor-

tized update time). The naive algorithm has total update time Õ(m2n). Baswana,
Hariharan, and Sen [2] showed that in directed unweighted graphs we can decremen-

tally maintain APSP with constant query time and total update time Õ(n3). They
showed in the same paper that if we allow a (1 + ε) approximation, we can reduce

the total update time to Õ(n2
√
m/ε). Roditty and Zwick [14] then showed that if we

allow a (1 + ε) approximation in undirected, unweighted graphs, we can reduce the

total update time to Õ(mn/ε).
All of these decremental algorithms are randomized; in particular, they only work

on an oblivious adversary, which does not get to see the random choices made by the
algorithm. This is true of our algorithm as well. Very recently, however, in a paper
to appear in the Proceedings of FOCS 2013, Henzinger, Krinninger, and Nanongkai
presented a deterministic decremental algorithm for (1 + ε)-approximate APSP that
achieves basically the same results as Roditty and Zwick’s randomized algorithm [14]:

total update time Õ(mn/ε) and query O(log log(n)) (not quite constant). This result
only works on unweighted, undirected graphs [10].

In dense graphs, we can actually improve the total update time of Õ(mn) if we al-
low a slightly worse approximation. Bernstein and Roditty showed that in unweighted,

1We say that f(n) = ˜O(g(n)) when we have that f(n) = ˜O(g(n)polylog(n)).

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

550 AARON BERNSTEIN

undirected graphs we can decrementally maintain (3 + ε)-approximate APSP in total

update time Õ(n2.5+1/
√

log(n)). Very recently, in the same FOCS 2013 paper [10],
Henzinger, Krinninger, and Nanongkai improved upon this bound. Their algorithm
has a slightly smaller total update time of Õ(n2.5) and has a reduced approximation
error of (2+ε). They can even reduce the multiplicative approximation error to (1+ε)
by introducing an additive error of 2 (same update time). These algorithms also only
work in unweighted, undirected graphs.

1.2. Our contributions. We present a new algorithm for decremental approx-
imate APSP. Note that if we restrict ourselves to only a (1 + ε) approximation, all

the above results for this problem are tending toward a natural Õ(mn) barrier; even
with a (1+ε) approximation, there is no o(mn) algorithm for computing static APSP,
so we have little hope of beating O(mn) in the dynamic case (if we allow more than
a (1 + ε) approximation, then we can, in fact, beat O(mn) in the static case, which
explains the recent results beating it in the dynamic case). Thus, the Roditty and
Zwick algorithm [14] and later the Henzinger, Krinninger, and Nanongkai algorithm
[10] achieve the best update time we can hope for with a (1+ ε) approximation. How-
ever, both these results only work in undirected unweighted graphs. This raises the
question of whether we can reach Õ(mn) for a more general case. Directed graphs?
Weighted graphs? Can we remove the (1+ε) approximation? We make some headway
toward answering this question. In particular, we prove the following theorem.

Theorem 1. Let G be a directed graph with real positive weights subject to an
online sequence of update and query operations, where a query operation asks for a
(1+ε)-shortest distance between any pair of vertices, while an update operation deletes
an edge, or increases the weight of an edge. There exists an algorithm that has worst-
case query time O(1) (a single table look-up), and that processes all updates in total
time O(mn log4(n) log(nR)/ε+Δ), where Δ is the total number of update operations,
and R is the ratio of the heaviest edge weight to appear in G at any point in the
update sequence to the lightest such edge weight. For unweighted graphs the running
time is slightly smaller: O(mn log4(n) log log(n)). The update procedure is randomized
(Monte Carlo) and assumes an oblivious adversary.

Note that the O(Δ) factor in our total update time has nothing to do with the
particularities of our algorithm but is simply an unavoidable constant time per update
(no matter what we do, we cannot avoid looking at every update). The only reason
O(Δ) did not come up in the other decremental algorithms mentioned above is because
they only worked for unweighted graphs, in which we always have Δ ≤ m because
every update deletes an edge. But in weighted graphs, we can no longer bound the
number of updates. It may thus appear strange that we continue to analyze our
algorithm in terms of total update time, but the basic idea is that our algorithm in
fact spends a total of only Õ(mn logR/ε) time processing updates that might actually
be relevant (i.e., might actually change some approximate shortest distance); it is not
hard to see that since distances only increase, any given x − y distance can increase
by a (1 + ε) factor at most log(1+ε)(nR) = O(log(nR)/ε) times, so there are at most

O(n2 log(nR)/ε) relevant updates that require processing. (Note that although we do
not know ahead of time which are relevant, this difficulty is not hard to deal with.)
The additional O(1) time per update then corresponds to merely throwing away the
irrelevant updates.

Note that log(nR) = O(log(n)) as long as weights are polynomial in n. Thus, our

algorithm achieves the desired Õ(mn/ε) total update time for directed graphs with
weights polynomial in n, as compared to the previous state of the art of Roditty and

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 551

Zwick [14], which only achieved this bound for undirected unweighted graphs. In fact,
ours is the first nontrivial algorithm for decremental APSP in weighted graphs (though
previous ones could handle small integer weights). Another advantage of our algorithm
over the one of Roditty and Zwick is that although their query time was constant, it
still required an involved process, whereas ours is simply a table look-up. One obvious
benefit of this is that in real-world scenarios, one often wants to keep query time as
small as possible. Another benefit is that in many settings, when an update occurs,
we want to quickly find out all pairs that were affected by it. The involved query
procedure of Roditty and Zwick would require them to separately check each pair, so
that even if only a few pairs were affected by the update, the algorithm would still
require a prohibitive Õ(n2) time to find those pairs. Our algorithm, however, could
just return all changed entries of our distance matrix; this requires time O (number
of changed entries) and so does not increase the asymptotic update time.

There is a standard reduction from decremental APSP algorithms to fully dynamic
APSP algorithms with a query-update trade-off. Thus, our improved decremental
algorithm leads to a new fully dynamic one. For any T ≤ √

n, we can maintain

(1 + ε)-APSP in directed graphs with amortized update time Õ(mn logR
Tε) and query

time O(T). This trade-off was previously only possible for undirected unweighted
graphs. The decremental to fully dynamic reduction was originally introduced by
Henzinger and King [9] and has since been used in several other dynamic shortest
paths papers [16], [14]. Our use of this reduction is more or less identical to previous
ones, but a few of the details differ, so we offer a more detailed discussion at the end
of the paper (section 8.3).

This paper presents our result as a decremental algorithm, but like many decre-
mental algorithms, it works equally well in the incremental setting where you have
only edge insertions and weight decreases. The algorithm for the two settings is es-
sentially identical, but we picked the decremental setting because it tends to be the
more difficult of the two and is arguably the more useful; for example, the above
reduction to a fully dynamic algorithm with a query-update trade-off only works if
one starts with a decremental algorithm. For the rest of the paper we focus only on
the decremental setting and leave our discussion of the incremental setting for the
very end (section 8.2).

Section 4 outlines the basic approach of our algorithm, but first we present no-
tation and existing work in sections 2 and 3. Section 5 introduces a simpler version
of our algorithm for the sake of intuition, and section 6 presents our final algorithm,
which proves the main theorem above. Section 7 presents in full detail an existing re-
sult that we rely heavily upon as well as a new improvement on this result that reduces
the algorithm’s dependence on Δ. Finally, section 8 touches upon some final details,
including applications of our algorithm to the incremental and fully dynamic setting.

2. Preliminaries. LetG = (V,E) be a directed graph with real positive weights.
As we process our updates, G always refers to the current version of the graph. Let
m be the number of edges in the initial graph, and let n be the number of vertices
(which does not change); we assume that m = Ω(n). Given any vertices x, y, let
(x, y) be the edge between them (if it exists), and let w(x, y) be the weight of this
edge. Let π(x, y) be the shortest x− y path in G (if one exists); if there are multiple
shortest paths from x to y, we can use any tie breaking strategy which ensures that
any subpath of a shortest path is itself a shortest path. (For an example, see section
3.4 of [7].) Define δ(x, y) to be the length of π(x, y), or ∞ if no x − y path exists.
We assume that all edge weights are positive. We define the hop-length of a path P ,

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

552 AARON BERNSTEIN

denoted h(P), to be the number of edges on P , and we let h(x, y) = h(π(x, y)). For
any h, we define πh(x, y) to be the shortest path from x to y that uses at most h
edges (if one exists), and we define δh(x, y) to be the length of πh(x, y), or ∞ if this
path does not exist. Given a graph G′ different from G, we define πG′(x, y), δG′(x, y),
πh
G′(x, y), and δhG′(x, y) to be the corresponding paths and distances in G′.

Many of our running times are expressed in terms of the variables Δ and R. We
define Δ to be the total number of updates made to the graph over the course of the
entire dynamic sequence. We define R to be the ratio of the largest weight in the
graph at any point in the update sequence to the smallest such weight. More formally,
we define C, c, and R as follows:

• C = maxτ max(u,v)∈E{w(u, v) at time τ},
• c = minτ min(u,v)∈E{w(u, v) at time τ},
• R = C/c.

Note that as long as weights are polynomial in n, logR = O(log(n)). Finally, we
say that output δ′(x, y) is α-approximate if δ(x, y) ≤ δ′(x, y) ≤ αδ(x, y). We say that
a path P (x, y) is α-approximate if its weight is an α-approximation of δ(x, y).

For the sake of simplicity, we make a few minor assumptions about the graph and
the update sequence.

• We assume that R is known in advance; in section 8.1, we show that this
assumption can easily be removed by continually updating an approximate
guess for R.

• We model the deletion of an edge by increasing its weight to ∞. This is not
quite rigorous, as then log(R) also becomes infinite. To resolve this, we model
the deletion of an edge by raising its weight to large number U∗. We ensure
that at all times U∗ ≥ 2nC∗, where C∗ is the larger noninfinite weight in
the current graph. Thus, if a query ever returns a shortest x − y distance
≥ U∗, this clearly corresponds to there being no path from x to y in the
graph. As edge weights in the graph increase, U∗ might come to be less
than 2nC∗, in which case we repeatedly double it until it is large enough.
It is not hard to see that modeling deletions in this way does not affect the
asymptotic running time. First, repeated doubling can never cause U∗ to
be greater than 4nC, so adding edges of weight U∗ increases R by only an
O(n) factor, so the log(nR) term is not affected. Second, U∗ doubles at most
O(log(4nC/c)) = O(log(nR)) times, so the dummy weight on each deleted
edge increases at most O(log(nR)) times, and the total number of additional
updates is at most O(m log(nR)); the change to O(Δ) is thus well within the

Õ(mn log(nR)) total update time.
• We assume the graph is connected at all times. Our algorithm does not
actually rely on this, but it obviates the need for an analysis of edge cases.
We can ensure this by adding a super source s∗ with an edge of weight U∗

to and from every vertex; as above, U∗ might increase as edge weights in the
original graph increase. A shortest distance ≥ U∗ once again indicates that
no path exists. The number of edges is still O(m), and the number of new
updates is only O(n log(nR)).

3. Maintaining a shortest path tree. All existing decremental algorithms
for APSP rely on a subroutine for maintaining a shortest path tree under deletions.
The original result comes from Even and Shiloach [8], and it was later extended to
directed weighted graphs by King [12]. We use the following from [12] (Ramalingam
and Reps [13] prove a similar result).

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 553

Theorem 2 (see [12]). Given a source s, it is possible to fully dynamically
maintain a shortest path tree from (or to) s in such a way that the update time for
update σ is O(1+E(σ)), where E(σ) is the number of edges incident to vertices whose
distance from source s changed as a result of update σ. That is, we only touch the
edges of a vertex when the distance to that vertex changes.

Corollary 3.1. Given a source s in a graph with positive integer weights, we
can decrementally maintain a shortest path tree up to distance d—that is, a shortest
path tree truncated at depth d—in total update time O(md) over all deletions.

Proof (of Corollary 3.1). All distances in the shortest path tree are between 1
and d, and the update sequence is decremental, so distances are only increasing. This
implies that the distance to any particular v can change at most d times. We thus
touch the incident edges of each vertex O(d) times over all deletions, leading to a total
update time of O(md).

In an earlier paper [3], we developed a simple but powerful generalization of the
above corollary, though at the cost of a (1 + ε) error. Loosely speaking, we showed
that instead of maintaining a shortest path tree up to distance d, we can efficiently
maintain it up to a hop-length h. We refer to this algorithm for decrementally main-
taining approximate single source shortest distances as the h-SSSP algorithm. We
now formally present the result achieved by h-SSSP, which we use a building block
throughout most of the paper, leaving the details of h-SSSP itself for section 7.

Theorem 3 (see [3]). Given a source s and a hop distance h, h-SSSP decre-
mentally maintains distances δ′(s, v) to each vertex v, such that we always have
δ(s, v) ≤ δ′(s, v) ≤ (1 + ε)δh(s, v). Moreover, after every update h-SSSP can re-
turn a list of all vertices v for which δ′(s, v) changed due to that update, without
affecting the asymptotic update time. The total update time of h-SSSP over all dele-
tions and weight-increases is O(mh log(n) log(nR)/ε + Δ) for weighted graphs and a
slightly faster O(mh log(n) log log(n)/ε) for unweighted ones.

Remark. Note that in the theorem above δ′(s, v) itself may correspond to a path
with more than h edges; the algorithm is not concerned with the length of the output
path. The only guarantee is merely that δ′(s, v) is a good approximation to δh(s, v),
which is equal to δ(s, v) as long as h(s, v) ≤ h. Thus, we can think of our algorithm
as maintaining (1 + ε)-distances from s up to hop-length h.

When we say that we “run” the h-SSSP algorithm from (to) vertex s, this refers
not merely to an initialization step, but rather to the whole dynamic procedure. In
other words, it means that we maintain approximate distances δ′(s, v) to (from) each
vertex v over all deletions to come. By Theorem 3 the total cost of running the
h-SSSP algorithm is Õ(mh logR/ε).

4. The basic approach. The basic outline of our approach is similar to one
Bernstein used in two earlier papers [3, 4], though except for the h-SSSP algorithm
essentially all the details differ. The advantage of h-SSSP over King’s O(md) algo-
rithm [12] (see Corollary 3.1) is that the latter maintains a shortest path tree up to
a certain distance, whereas h-SSSP maintains it up to a certain hop-length, and is
hence barely dependent on the weights of the edges. (The running time of h-SSSP
does depend on logR, but this is only a logarithmic dependence on the weight, as
compared to King’s linear dependence.) This change of focus from weighted distance
to hop-length is obviously crucial for weighted graphs, but it is in fact equally im-
portant in unweighted graphs. Both d and h can initially be as large as n − 1, but
whereas the distance between a pair vertices is inherent to the graph, the hop distance
can easily be decreased by adding shortcuts to the graph.

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

554 AARON BERNSTEIN

Suppose that we already knew the shortest distance δ(v, w). We could then add
a new edge (v, w) of weight δ(v, w); this would not change any of the distances in
the graph, but it would reduce h(v, w) to one. It would also reduce the hop-length
of any path that used π(v, w) as a subpath. This observation suggests the following
approach: we construct a large number of shortcut edges to reduce hop distances all
across the graph, which would allow us to efficiently run the h-SSSP algorithm. The
problem is that in order to create shortcut edges we need to have already computed
δ(v, w); moreover, as the graph changes, so do the shortest distances in the graph, so
dynamically maintaining correct weights on the shortcut edges requires maintaining
the distances δ(v, w).This leaves us in the position of trying to maintain shortest paths
by first maintaining other shortest paths.

Bernstein previously applied the idea of creating shortcut edges to reduce the
hop-diameter in two papers on undirected graphs [3, 4]. (Note that these papers were
not actually on the problem of decremental shortest paths; they just used the same
basic approach of shortcutting edges and then running an algorithm for small hop
distances.) The main idea was to apply results from the rich field of spanners and
emulators, which shows that one can approximate all distances in a graph with a small
number of edges. We modified this result to show that a small number of shortcut
edges can approximate all distances while effectively maintaining short hop-lengths
as well: that is, for any pair (x, y), one can always patch together an approximate
shortest path from x to y using just a small number of these shortcut edges. We
still had to maintain the distances of the shortcut edges directly, but these shortcut
distances were only a small subset of all distances.

We were previously unable to apply the idea of shortcuts to directed graphs,
however, because in this case it is essentially impossible to approximate all-pairs
shortest distances with a sparse spanner or emulator. The key feature of undirected
graphs is that if u and v are nearby, then shortest paths from u are approximately the
same as those from v, and we can therefore handle a whole cluster of nearby vertices
with a single representative. Such clustering does not work in directed graphs because
a short u− v path does not imply a short v − u path.

Shortcuts are thus much more difficult to apply in directed graphs, and as far as
we know, this is the first paper to do so in the dynamic setting. (In the static setting,
Thorup’s algorithm for distance oracles in planar graphs [18] uses them extensively,
and there are several papers that use them to achieve faster running times in practice;
see [1] for an overview.) Because directed graphs do not allow for clustering, we end up
having to maintain shortcut edges for essentially all pairs, which seems to bring us back
to the original predicament of trying to maintain APSP by first maintaining APSP.
The key lies in doing the computation in the proper order. The h-SSSP algorithm
already provides an efficient way to maintain shortest paths of small hop-length, so we
start by shortcutting those. This reduces the hop-length of the other paths because
shortcutting a subpath of some path π(x, y) reduces h(x, y). The reduced hop-lengths
allow h-SSSP to efficiently maintain a larger set of distances, which in turn leads to
more shortcut edges and a further reduction in hop-lengths. In iterating this process,
we continually shortcut the small-hop subpaths of large-hop paths, to the point where
the latter themselves become small-hop and easy to shortcut.

This paper is substantially less technical than our papers which applied the short-
cut edge approach to undirected graphs, because we do not rely on the heavy ma-
chinery of emulators and clustering. One advantage of this is that it forces us toD

ow
nl

oa
de

d
10

/1
9/

17
 to

 1
30

.1
49

.1
5.

12
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 555

explore the limits of the core approach itself; directed graphs do not seem to offer
much structure, so all we can really do is iteratively use the basic h-SSSP algorithm
to create more and more shortcut edges. We now present some of the key lemmas
and definitions used throughout our algorithm.

Definition 4.1. We say that an edge (u, v) with weight w(u, v) is an exact short-
cut edge if w(u, v) = δ(u, v). We say that it is an α-shortcut if δ(u, v) ≤ w(u, v) ≤
(1 + ε)αδ(u, v).

Definition 4.2. Let G∗ be the graph G with some shortcut edges added. Given
some x− y path P , we define the G∗-α-reduction of P to be the x− y path of smallest
hop-length whose edges are either part of P itself, or α-shortcuts of subpaths of P .
We refer to the hop-length of this reduction as the G∗-α-reduced hop-length of P .

It is easy to see that the G∗-α-reduction of a shortest path π(x, y) is a (1 + ε)α-
approximate shortest path. If all the shortcut edges were exact, then the reduced
path would have the same length as the original one. As is, all the shortcut edges are
off by a factor of at most (1 + ε)α, so the overall weight is off by at most (1 + ε)α.

Lemma 4.3. If the G∗-α-reduction of some path π(x, y) has fewer than h edges,
then running the h-SSSP algorithm on G∗ up to hop-length h yields a (1 + ε)α+1-
approximation to δ(x, y).

Proof. Since the G∗-α-reduction of π(x, y) has fewer than h edges, we know that
δhG∗(x, y) ≤ δ(x, y)(1 + ε)α. But by Theorem 3, the h-SSSP algorithm yields a 1 + ε
approximation to δhG∗(x, y), which is a (1 + ε)α+1 approximation to δ(x, y).

We now present a well-known sampling lemma that is used throughout our algo-
rithm.

Lemma 4.4. Let S be a set of r vertices chosen uniformly at random from V ,
and let P be some path in G with at least cn ln(n)/r vertices (c is a constant of our
choosing). Then, with probability at least 1 − n−c, the path P contains at least one
vertex in S.

Proof. For any particular vertex v ∈ P , we have that Pr[v ∈ S] = r/n. Thus,

Pr[S
⋂

P = ∅] ≤ (1− r/n)|P | ≤ (1− r/n)cn ln(n)/r < n−c.

For simplicity of presentation, we will fix c = 9. The following corollary is then a
direct consequence of the union bound.

Corollary 4.5. Let S be a set of r vertices chosen uniformly at random from
V , and let P be a set of ≤ n4 paths in G, each of which contains at least 9n ln(n)/r
vertices. Then, with probability at least 1−n−5, every path in P contains at least one
vertex in S.

Remark. Our algorithm only requires the above sampling lemma to hold for
O(n3 log(n)) paths (n2 shortest paths in n log(n) different graphs used by our algo-
rithm), so we can use the above corollary. Now, note that since we are assuming an
adversary that is oblivious to our random choices, the set of r sampled vertices will
be random from the perspective of each version of the graph throughout the update
sequence. Thus, Corollary 4.5 holds with probability at least 1−n−5 for each version
of the graph, so by the union bound, it will hold with high probability for all versions
within the first O(n4) updates.

Now, as we discuss in the next few sections, since we are looking for a (1 + ε)
approximation we only need to register a change to an edge weight when it has
increased by at least a (1+ ε) factor. The total number of updates that our algorithm
actually registers (instead of simply throwing away) is thus O(m log(nR)). On the
reasonable assumption that logR ≤ n3/m, the number of updates is O(n4), so by

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

556 AARON BERNSTEIN

the above discussion setting c = 9 will ensure that the corollary holds with high
probability throughout all versions of th graph. More generally, it is not hard to see
that if logR = O(nx), then setting c = x+5 is sufficient. In the extremely unlikely case
that logR is not polynomial in n we would need to set c to be O(log log(R)/ log(n)),
and the running time of the whole algorithm would be multiplied by this factor.
In this case, however, our running time is already superpolynomial, and we would
likely be better off using an algorithm that works for general weights. All in all we
assume for the rest of the paper that Corollary 4.5 holds throughout all versions of the
graph.

5. An Õ(mn4/3 logR/ε) algorithm. We now present an algorithm for decre-
mentally maintaining (1+ε) shortest paths in directed graphs with a total update time

of Õ(mn4/3 logR/ε). We later improve this to Õ(mn logR/ε), but even this prelimi-
nary approach already yields the first efficient decremental algorithm for polynomial
weights, and for sparse m it even beats the previous state of the art of Õ(n2

√
m/ε)

for unweighted directed graphs.
We maintain approximate APSP by separately maintaining distances from dif-

ferent sources using the h-SSSP algorithm. The h-SSSP algorithms that we use are
grouped into three distinct layers. The first layer of h-SSSP algorithms runs on the
main graph G, and maintains approximate distances from only a small number of
sources, up to a limited h. We use these distances to construct shortcut edges, which
reduce hop-lengths in G. Our second layer runs on this new graph with shortcut edges
added and is thus able to efficiently maintain a larger subset of approximate shortest
distances. We use these distances to create even more shortcut edges, which further
reduce hop-lengths. Our third and final layer computes all-pairs shortest distances
by running h-SSSP from every vertex v; this remains efficient because, thanks to
the shortcut edges from the second layer, we only have to run h-SSSP up to a small
hop-length h.

Recall that the h-SSSP algorithm is not a one-time computation but rather main-
tains distances dynamically over all updates, so all our overall algorithm needs to do
is set up the necessary h-SSSP algorithms in the very beginning and let them run.
Each of the three layers is responsible for maintaining its own distance matrix, which
is simply an aggregate of the distances maintained by all of the h-SSSP algorithms in
that layer. As we process our updates, the distances in these matrices will increase,
which will lead to weight-increases in the corresponding shortcut edges.

Dependence on Δ. Our primary concern with respect to running time is to main-
tain distances in total time Õ(mn log(R)); the whole apparatus of shortcut edges was
developed for this purpose. But a secondary concern is ensuring that every update
incurs an additional overhead of only O(1), i.e., that the dependence on Δ is only
O(Δ). We show in section 7.1 that the h-SSSP building block incurs this optimal
overhead of O(1) time per update. The problem is that our APSP algorithm runs
h-SSSP algorithms from O(n) different sources, which seems to lead to an overhead of
O(n) per update. We resolve this problem by noting that although the total number
of updates can be arbitrarily large, most of them will only increase weights by a small
amount. Any such insignificant update can simply be ignored in O(1) time, i.e., not
processed by any of the h-SSSP algorithms. To this end, we define a function which
allows us to only register updates that increase the weight by a (1 + ε) factor.

Definition 5.1. For any number x, let Round(1+ε)(x) be (1+ ε)�log(1+ε)(x)	 (the
smallest power of (1 + ε) that is ≥ x).D

ow
nl

oa
de

d
10

/1
9/

17
 to

 1
30

.1
49

.1
5.

12
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 557

5.1. The algorithm.

Main setup.

1. Use Dijkstra to compute shortest paths from all v ∈ V in the original graph,
before any updates occur.

2. Sample n2/3 vertices uniformly at random, and let A be the resulting set.
3. For all a ∈ A, run the h-SSSP algorithm from a up to hop-length 10n2/3.

Recall that this maintains distances from a over all deletions to come. Store
the distances maintained in a matrix DA×A, which is initialized with the
distances from Step 1. (DA×A stores approximate distances between nearby
vertices in A.)

4. Let G∗ be the graph G plus a shortcut edge added for each pair (a, b) ∈ A×A.
Set shortcut (a, b) to have weight Round(1+ε)(DA×A[a, b]).

5. For each a ∈ A, run the h-SSSP algorithm to a in G∗ up to hop-length
10n1/3 ln(n). Store the results in a matrix DV ×A, which is initialized with
the distances from Step 1. (DV ×A stores approximate distances to all vertices
in A.)

6. For each v ∈ V , let Gv be the graph G with a shortcut edge added from v to
every vertex in a ∈ A. Set shortcut (v, a) to have weightRound(1+ε)(DV×A[v, a]).

7. For each v ∈ V , run the h-SSSP algorithm from v up to hop-length 10n1/3 ln(n)
in Gv. Store the results in a matrix DV×V , which is initialized with the dis-
tances from Step 1. This is our final distance matrix.

Query(v, w). To approximate δ(v, w), simply return DV×V [v, w].

Update step. Our whole algorithm is essentially contained in the h-SSSP algo-
rithms of the main setup. The only catch is that many of these algorithms are not run-
ning on the main graph G but on a graph that also contains some shortcut edges. It is
crucial for correctness that we dynamically maintain correct distances for these short-
cuts (as δ(x, y) changes, the weight of an x−y shortcut should also change). Here is the
order in which we process an update increase-weight(x, y) : wold(x, y) → wnew(x, y)
(an edge deletion can be modeled as increasing the weight to ∞).

• If Round(1+ε)(wnew(x, y)) = Round(1+ε)(wold(x, y)), the algorithm simply
throws away the update in O(1) time and does not move on to the steps
below. Note that because of this, all edge weights in G are effectively only
(1 + ε)-approximate.

• Else, if Round(1+ε)(wnew(x, y)) > Round(1+ε)(wold(x, y)), input the update
increase-weight(x, y) into all of the h-SSSP algorithms from Step 3, which
might cause some of the distances maintained in DA×A to change.

• For all entries for which Round(1+ε)(DA×A[a, b]) has increased, we increase
the weight of corresponding shortcut edge (a, b) in G∗ (Step 4) to the new
Round(1+ε)(DA×A[a, b]).

• Input the original increase-weight(x, y), as well as all the shortcut-edge weight
increases in G∗ from the previous step, into the h-SSSP algorithms of Step 5.
This might cause changes in DV×A.

• For all v ∈ V , for all entries for which Round(1+ε)(DV×A[v, a]) has increased,
we increase the weight of corresponding shortcut edge (v, a) in Gv (Step 6)
to the new Round(1+ε)(DV ×A[v, a]).

• Input increase-weight(x, y), as well as all the shortcut-edge weight increases
from the previous step, into the h-SSSP algorithms of Step 7. This might
cause some changes to DV×V , which makes sense, since our final distance
matrix should be changing over time.

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

558 AARON BERNSTEIN

5.2. Running time analysis. The key observation is that the running time for
a single update step is just the time to update the distance matricesDA×A, DV×A, and
DV×V via the h-SSSP algorithms of the main setup. We also have to increase shortcut
edge weights, but every such increase corresponds to a change in DA×A, DV×A, or
DV×V and so can be charged to the h-SSSP algorithms. Thus, the total update time
of our algorithm is simply the sum of the total update times of all of its constituent
h-SSSP algorithms. We now proceed to analyze this sum.

Note that the rate at which edge-weights are increased may vary greatly depending
on whether we are dealing with G, G∗, or Gv; a single update only increases one edge
weight in the main graph G, but this can lead to a large number of shortcut-edge
weight increases in Gv. All that matters, however, is that since G only sees weight
increases (by definition of this being a decremental algorithm), G∗ and Gv will also
only see weight increases; shortcut edge weights are based on distances in G, so since
the latter are only getting larger, the same is true of the former. Thus, the algorithm
is decremental from the perspective of each graph involved, which allows us to side-
step the analysis of how many updates occur in each graph; all that matters is that in
each graph, the h-SSSP algorithm will always have total update time Õ(m′h logR/ε),
where m′ is the number of edges on the graph in question (m′ is larger than m when
we add shortcut edges).

Technical note. The running time of h-SSSP depends on log(nR), but the h-SSSP
algorithms run on graphs with weighted shortcut edges, and R might be slightly larger
in these shortcutted graphs than in the original graph. But since every shortcut edge
corresponds to a (1 + ε) approximate distance in the original graph, no shortcut will
have weight larger than R′ = (1 + ε)nR, so the running time will not be affected
because log(nR′) = O(log(nR)). Thus, we just assume the same R throughout.

• Step 3 runs the h-SSSP algorithm from n2/3 vertices up to h = O(n2/3),

which by Theorem 3 yields a total update time of Õ(n2/3mn2/3 logR/ε) =

Õ(mn4/3 logR/ε).

• Step 5 runs the h-SSSP algorithm to n2/3 vertices up to h = Õ(n1/3). Note,
however, that the graph G∗ has (m+n4/3) edges because of the shortcut edges

for A×A. This yields a total update time of Õ(n2/3(m+n4/3)n1/3 logR/ε) =

Õ(mn+ n7/3) = Õ(mn4/3 logR/ε).

• Step 7 runs the h-SSSP algorithm from n vertices up to h = Õ(n1/3). Each
graph Gv has m + n2/3 = O(m) edges. Thus, the total update time is

Õ(nmn1/3 logR/ε) = Õ(mn4/3 logR/ε).
Dependence on Δ. Our algorithm is built on many h-SSSP algorithms that process

many difference edge weight increases: increases to weights of edges in G but also to
the various shortcut edges. Let us define any such weight increase wold(x, y) →
wnew(x, y) to be significant if Round(1+ε)(wnew(x, y)) > Round(1+ε)(wold(x, y)). It is
clear from the description of our update step that any weight increase which is not
significant is thrown away in O(1) time and not processed by any h-SSSP algorithms;
this is where the O(Δ) term comes from. We now show that that the total number of
times an h-SSSP algorithm processes a significant update is O(mn log(nR)/ε), which
is within our desired update bounds.

Recall the definitions of c, C, and R from section 2. The weight of any edge
in G ranges from c to C. Every shortcut edge weight is a (1 + ε) approximation to
some shortest distance in G, so it ranges from c to at most (1 + ε)nC ≤ 2nC. Thus,
since edge weights only increase, the number of significant updates on any given edge
(shortcut edges included) is at most O(log1+ε(2nC/c)) = O(log(nR)/ε).

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 559

In particular, since the main algorithm runs O(n) h-SSSP algorithms, and ev-
ery edge in G (i.e., every nonshortcut edge) registers O(log(nR)/ε) significant up-
dates, the total number of times that an h-SSSP algorithm processes a significant
update on an edge in G is O(mn log(nR)/ε). G∗ contains O(n4/3) shortcut edges
betweeen vertices in A, and any significant update to one of these is processed by the
O(n2/3) h-SSSP algorithms running on G∗, leading to an additional O(n2 log(nR)/ε)
significant updates processed by an h-SSSP algorithm. Finally, for each vertex v
the graph Gv contains n2/3 shortcut edges but has only a single h-SSSP algorithm
running on it, so the total number of times an h-SSSP algorithm processed a signif-
icant update to a shortcut edge in some graph Gv is only O(n5/3 log(nR)/ε). Thus
the total number of times that an h-SSSP algorithm processes a significant update
is only O(mn log(nR)/ε); all other updates are insignificant and thrown away in
O(1) time.

5.3. Approximation error analysis. Before proceeding, we observe a basic
mathematical fact.

Lemma 5.2. For any positive real number ε < 1 and any nonnegative integer a,
we have (1 + ε

2a)
a < 1 + ε.

Proof. Since ε
2a < 1, we have (1 + ε

2a)
a < (e

ε
2a)a = eε/2 < 1 + ε.

We now prove that the distances stored in DV×V are (1+ ε)6-approximate. Using
ε′ = ε/12, by Lemma 5.2 we get a (1 + ε/12)6 ≤ (1 + ε)-approximation. Recall that
h(a, b), δ(a, b), and so on always refer to the current version of G. Recall also that
G∗ is the graph from Step 4 of the initialization phase, and Gv are the graphs from
Step 6.

Lemma 5.3. For any pair (a, b) ∈ A × A, if h(a, b) ≤ 10n2/3, then there is a
3-shortcut from a to b in G∗ (see Definition 4.1 for 3-shortcut).

Proof. Recall that the weight of the shortcut edge is Round(1+ε)(DA×A[a, b]).
By Theorem 3 the h-SSSP algorithm in Step 3 yields a (1 + ε)-approximation to

δ10n
2/3

(a, b) = δ(a, b); however, since edge weights inG are only a (1+ε)-approximation
to their actual weight (because we only register updates that increase Round(1+ε)

(w(x, y))), the total approximation factor is (1 + ε)2. Thus, DA×A[a, b] is (1 + ε)2-
approximate. The Round(1+ε) function on the shortcut weights adds another (1 + ε)-
approximation, leading to (1 + ε)3 in total.

Lemma 5.4. For any pair of vertices (v, a) ∈ V ×A, the G∗-3-reduced hop-length
of π(v, a) is ≤ 10n1/3 ln(n) (see Definition 4.2).

Proof. We prove this by exhibiting a path of hop-length ≤ 10n1/3 log(n) that only
uses edges of π(v, a) and 3-shortcuts of its subpaths. Let b be the first vertex in A on
π(v, a). By Lemma 4.4, there are at most 9n1/3 ln(n) edges between v and b, so we
just follow these directly. We now need to find a path from b to a.

We prove the following by induction: for any vertex a′ ∈ A, there is a path from
a′ to a consisting of at most �h(a′, a)/n2/3	 3-shortcuts of subpaths of π(a′, a).

• Base case. If h(a, a′) ≤ 10n2/3, then by Lemma 5.3 there is a 3-shortcut from
a′ to a.

• Induction step. We now assume that the claim is true for all vertices a′ ∈ A
for which h(a′, a) ≤ i, and prove that it then also holds when h(a′, a) = i+1.
If h(a′, a) ≤ 10n2/3, we use the base case; otherwise, by Lemma 4.4, there
is some vertex a′′ ∈ A on π(a′, a) that is between n2/3 and 10n2/3 vertices
away from a′ (because this interval contains 9n2/3 ≥ 9n1/3 ln(n) vertices).
Since h(a′, a′′) ≤ 10n2/3, there exists a 3-shortcut (a′, a′′); combining this
3-shortcut with the path of at most �h(a′′, a)/n2/3	 ≤ (�h(a′, a)/n2/3	 − 1)

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

560 AARON BERNSTEIN

3-shortcuts from a′′ to a guaranteed by the induction hypothesis yields the
desired path of 3-shortcuts from a′ to a.

We can now prove the main lemma: to get from v to a we first use 9n1/3 ln(n)
nonshortcut edges to get from v to the first vertex b on π(v,A) that is in A; since
h(b, a) is trivially ≤ n, we now take a path of at most �n/n2/3	 = �n1/3	 3-shortcuts
from b to a.

Corollary 5.5. All the entries in DV×A are (1 + ε)4 approximate distances.
This follows directly from Lemmas 5.4 and 4.3.

Lemma 5.6. All the entries in DV×V are (1 + ε)6-approximate distances.

Proof. We maintain DV×V by running the h-SSSP algorithm on each Gv. We
know that all the shortcuts in Gv are 5-shortcuts because their weights are obtained
fromDV×A; we get a (1+ε)4 error fromDV×A and another (1+ε) from the Round(1+ε)

function.

We can now show that theGv-5-reduced hop-length of any π(v, w) is≤ 10n1/3 log(n).
If h(v, w) ≤ 10n1/3 log(n), then this is trivially true. Otherwise, by Lemma 4.4 there
must be a vertex in A on π(v, w). Let a be the last such vertex, and note that again
by Lemma 4.4, h(a, w) ≤ 9n1/3 log(n). Thus, our 5-reduced path is just the 5-shortcut
from v to a (created in Step 6), followed by the path π(a, w). By Lemma 4.3, running
h-SSSP up to h = 10n1/3 log(n) yields a (1+ε)(1+ε)5 = (1+ε)6-approximation.

6. The Õ(mn logR/ε) algorithm. Our Õ(mn logR/ε) algorithm is a direct

extension of the Õ(mn4/3 logR/ε) algorithm above. The basic idea remains the same;
we maintain some subset of the shortest distances and use these to construct shortcut
edges which lower hop-lengths and hence allow us to efficiently maintain more short-
est distances, and so on. Once again the h-SSSP algorithms dynamically maintain
distances from a source over all updates, so we just set them up in the beginning
and let them run. In this version, however, instead of using three layers of h-SSSP
algorithms, we use log(n) layers. We assume for simplicity that n is a power of 4.

Definition 6.1. For the rest of this paper, we define q to be log(n)/2.

Definition 6.2. Define A0 to be V . Construct A1 by picking half of the vertices
from A0 = V uniformly at random. Construct A2 by picking half the vertices from
A1 uniformly at random. Keep doing this until we reach Aq = A(log(n)/2). Note that

Ak contains n/2k random vertices from V and that |Aq| = √
n.

6.1. The algorithm.

Main setup.

1. Use Dijkstra to compute, for all vertices v, shortest paths from v in the
original graph G before any updates.

2. Construct the sets A0, A1, . . . , Aq as in Definition 6.2.
3. For each v ∈ Aq, run the h-SSSP algorithm to and from v up to h =

10
√
n log(n) on the main graph G. Store the results in DAq×Aq . We initialize

this matrix with the distances from Step 1. (DAq×Aq contains approximate
distances between nearby vertices in Aq.)

4. Let Gq be the graphG with a shortcut edge (v, w) added for each pair (v, w) ∈
Aq ×Aq. Set the weight of shortcut (v, w) to be Round(1+ε)(DAq×Aq [v, w]).

5. For each v ∈ Aq, run the h-SSSP algorithm to and from v on the graph Gq

up to h = 10
√
n log(n). Store the results in matrix Dq. As before, initialize

Dq with the distances from Step 1. (Dq contains approximate distances to
and from vertices in Aq.)

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 561

6. For k = q − 1 down to 0:
• For each v ∈ Ak, we create a graph Gv,k, which is the graph G with
shortcut edges (v, w) and (w, v) added for every w ∈ Ak+1. Set the
weight of shortcut (v, w) to be Round(1+ε)(Dk+1[v, w]), and do the same
for (w, v).

• For each v ∈ Ak, run the h-SSSP algorithm to and from v in Gv,k up to
h = 10 log(n)2k+1. Store the combined results for all v ∈ Ak in matrix
Dk. (Dk contains approximate distances to and from vertices in Ak.)

Query(v, w). To find an approximation to any δ(v, w), simply look up D0[v, w].

Update step. As in section 5, all the work of our algorithm is done by the various
h-SSSP algorithms of the main setup. All we need to describe here is the order in
which we process some update increase-weight(x, y) : wold(x, y) → wnew(x, y) (an
edge deletion can be modeled as increasing the weight to ∞).

• If Round(1+ε)(wnew(x, y)) = Round(1+ε)(wold(x, y)), the algorithm deems the
update insignificant and throws it away in O(1) time; i.e., it skips the steps
below and does not process the update in any h-SSSP algorithm.

• Else, if Round(1+ε)(wnew(x, y)) > Round(1+ε)(wold(x, y)), input the update
increase-weight(x, y) into all of the h-SSSP algorithms from Step 3. This
might cause some of the distances maintained in DAq×Aq to change.

• For all (v, w) ∈ Aq × Aq for which we have that Round(1+ε)(DAq×Aq [v, w])
has increased, we increase the weight of shortcut edge (v, w) in Gq (Step 4)
to the new Round(1+ε)(DAq×Aq [v, w]).

• Input the original increase-weight(x, y) as well as all the shortcut-edge weight
increases in Gq from the previous step into the h-SSSP algorithms of Step 5.
This might cause changes to Dq.

• For k = q − 1 down to 0:
– For all pairs (v, w) ∈ Ak × Ak+1 for which Round(1+ε)(Dk+1[v, w]) or

Round(1+ε)(Dk+1[w, v]) has increased, we increase the weight of cor-
responding shortcut edge (v, w) or (w, v) in Gv,k to the new value of
Round(1+ε)(Dk+1[v, w]) or Round(1+ε)(Dk+1[w, v]).

– For each v ∈ Ak, input the original increase-weight(x, y) as well all the
shortcut-edge weight increases from the previous step into the h-SSSP
algorithm to and from v in Gv,k. Record the changed distances for each
v into the matrix Dk.

6.2. Running time analysis. As in section 5.2, we have various graphs Gv,k

whose edges are changing at different rates, but the algorithm is nonetheless decre-
mental from the point of view of each of these graphs. Thus, we simply need to
analyze the total update times of all the h-SSSP algorithms and the time to maintain
Gq and all the Gv,k. Recall the definitions of c, C, and R from section 2. (Techni-
cal note: The value of R might vary slightly among the h-SSSP algorithms because
of the shortcut weights, but, as discussed in section 5.2, it never gets so big as to
asymptotically affect the running time.)

• To maintainDAq×Aq in Step 3, we run the h-SSSP algorithm from
√
n vertices

up to h = O(
√
n log(n)), which results in total update time O((

√
n log(n))

(m
√
n log(n) log(nR)/ε)) = O(mn log2(n) log(nR)/ε).

• For all k, we maintain Dk by running the h-SSSP algorithm from |Ak| = n/2k

vertices up to h = O(2k log(n)). Each graph Gv,k has O(m+ |Ak+1|) = O(m)
edges, so the total update time corresponding to any given k is O((n/2k) ·
(2k log(n)) · (m log(n) log(nR)/ε)) = O(mn log2(n) log(nR)/ε). There are

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

562 AARON BERNSTEIN

O(log(n)) values of k, which yields another log factor. Finally, as we discuss
at the beginning of the next section, in order for the algorithm to yield
the desired (1 + ε) approximation it must internally use ε′ = ε/ log(n),
which incurs an additional log(n) factor. The final running time is thus
O(mn log4(n) log(nR)/ε). The same analysis yields a slightly faster running
time of O(mn log4(n) log log(n)/ε) in unweighted graphs because the h-SSSP
algorithm is slightly faster in that case (see Theorem 3).

Dependence on Δ. The analysis of the overhead per update is almost identical
to that of section 5.2. As before, the number of significant updates on any given
edge (shortcut edges included) is at most O(log1+ε(2nC/c)) = O(log(nR)/ε). The
total number of h-SSSP algorithms is |Aq| =

√
n running on the original graph

G, |Aq| =
√
n running on Gq, and one more for each graph Gv,k, for a total of

2
√
n +

∑q
k=0(n/2

k) = O(n). Thus, the total number of times that an h-SSSP al-
gorithm processed a significant update on an edge in G (i.e., a nonshortcut edge) is
O(mn log(nR)/ε).

We now bound the number of times an h-SSSP algorithm processed a signifi-
cant update on a shortcut edge. The graph Gq has O(n) shortcut edges, and there
are O(

√
n) h-SSSP algorithms running on it, for a total of O(n1.5 log(nR)/ε) sig-

nificant updates processed. Each graph Gv,k has |Ak+1| = n/2k+1 = O(n) short-
cut edges (see section 6.2 for details), each of which is processed by one single h-
SSSP algorithm: the one running to and from v in Gv,k. For any fixed k, there are
|Ak| = O(n/2k) graphs Gv,k, so the total number of shortcut edges over all the Gv,k

graphs is O(n
∑q

k=1 n/2
k) = O(n2). Since each edge registers only O(log(nR)/ε) sig-

nificant updates, the total number of significant shortcut weight increases processed
by our algorithm, i.e., the number of times that a h-SSSP algorithm must handle a
shortcut weight increase, is only O(n2 log(nR)/ε). All in all, combining shortcut and
nonshortcut edges, the total number of times that an h-SSSP algorithm processes a
significant update is only O(mn log(nR)/ε); all other updates are insignificant and
thrown away in O(1) time.

6.3. Approximation analysis. We will prove that our final distance matrix
D0[v, w] contains a (1 + ε)(4+log(n))-approximation to all shortest distances. Using
ε′ = ε/(4 log(n)), we get a (1 + ε

4 log(n))
(4+log(n)) ≤ (1 + ε

4 log(n))
2 log(n) ≤ (1 + ε)-

approximation (see Lemma 5.2) while only multiplying the running time by O(log(n)).
Generally speaking, each layer of the algorithm incurs a (1 + ε)2-approximation: one
(1+ ε) factor comes from the h-SSSP algorithm, while the other comes from applying
the Round(1+ε) function to the shortcut weights of the graphs in that layer.

The graphs Gq and Gv,k refer to the graphs created during the main setup (see
section 6.1). Recall that δ(x, y), h(x, y), and π(x, y) are changing over time, and refer
to the current graph.

Lemma 6.3. For any pair (x, y) ∈ V × Aq, the entries Dq[x, y] and Dq[y, x] are
(1 + ε)4-approximations to δ(x, y), δ(y, x), respectively.

Proof. First note that DAq×Aq is maintained by running the h-SSSP algorithm on
the main graph G, so it is (1+ ε)-approximate up to h = 10

√
n log(n). However, since

edge weights in G are themselves only (1 + ε)-approximate (because we only register
an update to w(x, y) if it increases Round(1+ε)(w(x, y))), h-SSSP returns (1 + ε)2-
approximate distances. Thus, for any pair (a, b) ∈ Aq×Aq with h(a, b) ≤ 10

√
n log(n),

there is a 3-shortcut edge (a, b) in Gq; it is a 3-shortcut rather than a 2-shortcut
because of the extra (1 + ε) error that comes from applying the Round(1+ε) function
to the shortcut weight.

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 563

We now prove that the Gq-3-reduction of π(x, y) has at most 10
√
n log(n) edges.

Since we run each h-SSSP algorithm to and from its source, the proof for π(y, x) is
exactly the same. More generally, the proof is completely analogous to that of Lemma
5.4. The goal is to exhibit an x − y path P of hop-length ≤ 10

√
n log(n) that uses

only edges of π(x, y) and 3-shortcuts of its subpaths. Recall that y ∈ Aq, and let x2

be the first vertex in Aq on π(x, y). By Lemma 4.4, x2 is at most 9
√
n log(n) vertices

away from x, so our path P will just directly take the subpath π(x, x2).
To get from x2 to y, we prove the following by induction: given any y′ ∈ Aq, there

is a path from y′ to y consisting of at most �h(x, y)/√n	 3-shortcuts of subpaths of
π(y′, y).

• Base case. If h(y′, y) ≤ 10
√
n log(n), then Gq contains a 3-shortcut between

them, so we just use that.
• Induction step. We now assume that the claim holds for all vertices y′ ∈ Aq

for which h(y′, y) ≤ i, and prove it for the case that h(y′, y) = i + 1. If
h(y′, y) ≤ 10

√
n log(n), we simply use the base case; otherwise, again by

Lemma 4.4, π(y′, y) contains some vertex y′′ ∈ Aq that is between
√
n and

10
√
n log(n) vertices away from y′ (this interval of vertices is a shortest path

with more than 9
√
n log(n) vertices, so it must contain a vertex in Aq). Since

h(y′, y′′) ≤ 10
√
n log(n), Gq contains a 3-shortcut (y′, y′′); combining this

3-shortcut with the path of �h(y′′, y)/√n	 ≤ (�h(y′, y)/√n	 − 1) 3-shortcuts
from y′′ to y guaranteed by the induction hypothesis yields the desired path
of 3-shortcuts from y′ to y.

Our final path from x to y consists of the at most 9
√
n log(n) nonshortcut edges

from x to x2, followed by the �h(x2, y)/
√
n	 ≤ �n/√n	 = �√n	 3-shortcuts from x2 to

y, yielding fewer than 10
√
n log(n) edges in total. By Lemma 4.3 this implies that the

h-SSSP algorithm of Step 5, which runs up to hop-length h = 10
√
n log(n), returns a

(1 + ε)(1 + ε)3 = (1 + ε)4-approximation, as desired.
Lemma 6.4. Given any nonnegative integer k ≤ q = log(n)/2 and any pair

(u, v) ∈ Ak×V , we have that Dk[u, v] and Dk[v, u] are (1+ε)4+2(q−k)-approximations
to δ(u, v), δ(v, u). In particular, for any pair of vertices u, v ∈ V , D0[u, v] is a
(1 + ε)log(n)+4-approximation, as desired.

Proof (by induction). We proved the base case of k = q in Lemma 6.3, so only
the induction step is left. We assume the lemma is true for some k and prove that it
also holds for k − 1.

For any v ∈ Ak−1, all the shortcut edges in Gv,k−1 come from Dk, so since the
lemma holds for Dk, these must all be (5+2(q−k))-shortcuts; the extra (1+ ε) factor
(from 4 to 5) comes from the application of the Round(1+ε) function to the shortcut
weights in Gv,k−1. We now show that for any pair (u, v) ∈ V × Ak−1, the Gv,k−1-
(5 + 2(q − k))-reduction of π(u, v) has hop-length ≤ 10 log(n)2k. Let u2 be the first
vertex in Ak on π(u, v) (if u2 does not exist, then by Lemma 4.4 h(u, v) ≤ 9 log(n)2k,
so we are done). We know from Lemma 4.4 that the subpath π(u, u2) of π(u, v)
contains at most 9 log(n)2k edges. Moreover, because of how we constructed Gv,k−1,
there must be a (5 + 2(q − k))-shortcut (u2, v). We have thus exhibited a u− v path
with ≤ 9 log(n)2k + 1 ≤ 10 log(n)2k edges, as desired. It is not hard to see that by
symmetry, the same holds for the reverse direction: for any (u, v) ∈ V × Ak−1 the
Gv,k−1-(5 + 2(q − k))-reduction of π(v, u) has hop-length ≤ 10 log(n)2k.

Thus, by Corollary 4.3, the h-SSSP algorithm to and from v on Gv,k−1 up to h =
10 log(n)2k incurs an additional (1 + ε)-aproximation and returns a (1 + ε)6+2(q−k) =
(1+ ε)4+2(q−(k−1))-approximation to both δ(u, v) and δ(v, u). Our argument holds for
all pairs (u, v) ∈ V ×Ak−1, so we are done.

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

564 AARON BERNSTEIN

7. The h-SSSP algorithm. We now present the h-SSSP algorithm for decre-
mentally maintaining an approximate shortest path tree up to hop-length h. This
algorithm is not new to this paper and was used as a subroutine in Bernstein’s FOCS
2009 paper [3]. Recall the main theorem we are trying to prove.

Theorem 4 (see [3]). Given a source s and a hop distance h, We can decremen-
tally maintain distances δ′(s, v) to every vertex v such that we always have δ(s, v) ≤
δ′(s, v) ≤ (1+ε)δh(s, v). The total update time over all deletions and weight-increases
is O(mh log(n) log(nR)/ε+Δ) in weighted graphs and O(mh log(n) log log(n)) in un-
weighted ones.

Recall from Theorem 2 that the main idea behind King’s O(md) algorithm was
to only explore the edges of a vertex v when the distance to v from s changed. The
basic idea of our (1 + ε)-approximation is to only explore the edges of v when δ(s, v)
changes by a significant amount. The h-SSSP algorithm is actually broken up into
many smaller algorithms, each of which handles different ranges of δh(s, v).

Definition 7.1. Given a source vertex s, a hop-length h, and an integer k,
we say that algorithm Ak maintains h-SSSPk if it decrementally maintains distances
δ′k(s, v) with the following properties:

• If 2k ≤ δh(s, v) ≤ 2k+1, then δ(s, v) ≤ δ′k(s, v) ≤ (1 + ε)δh(s, v).
• Otherwise, our only guarantee is that δ(s, v) ≤ δ′k(s, v).

Lemma 7.2. Assuming 0 < ε < 1, we can maintain any h-SSSPk in total update
time O(mh/ε+Δ).

Proof of Lemma 7.2. Recall that here we are only concerned with approximating
distances δh(s, v) for which 2k ≤ δh(s, v) ≤ 2k+1. For the rest of this proof, let

α = ε2k

h . We start by scaling the edge-weights of graph G to obtain a new graph Gk

in the following way:

• Delete all edges of weight > 2k+1 from G.
• Round all remaining edge weights up to the nearest integer multiple of α.
• Divide all edge weights by α.

Note that the scaled weights in Gk are positive and integral. Our algorithm main-
tains a shortest path tree from s in Gk by simply running King’s O(md) decremental
SSSP algorithm (see section 3) up to distance d = �4h/ε	. More precisely, if an up-
date deletes (u, v) in the original graph, we simply delete (u, v) in the scaled graph;
if the update is increase-weight (u, v), we first scale the new weight according to the
three steps above and then change the weight of w(u, v) to this new scaled weight.
We then output δ′k(s, v) = α · δGk

(s, v). By Corollary 3.1, the total update time of
King’s algorithm is just O(md) = O(mh/ε), as desired. The final O(Δ) term arises
from weight increases in G that do not change the scaled weights in Gk (i.e., the old
weight and the new weight scale up to the same nearest multiple of α) and so are
discarded in O(1) time. We now do an approximation analysis.

Let G∗
k be the graph Gk before dividing the edge weights by α (but after scaling

up to a multiple of α), and note that since Gk and G∗
k are the same up to a scaling

factor, our output is precisely δ′k(s, v) = α · δGk
(s, v) = δG∗

k
(s, v). All edge weights

in G∗
k are greater than those in G, so it is clear that δ′k(s, v) = δG∗

k
(s, v) ≥ δ(s, v).

We now need to show that if 2k ≤ δh(s, v) ≤ 2k+1, then δG∗
k
(s, v) ≤ (1 + ε)δh(s, v).

To see this, let us examine how the weight changes G → G∗
k affect πh(s, v). Since

δh(s, v) ≤ 2k+1, πh(s, v) does not contain any edges of weight > 2k+1, so the first set
of changes does not affect it at all. The second set of changes adds up to α weight
to every edge on πh(s, v), so the weight of the path in G∗

k is at most δh(s, v) + hα =
δh(s, v) + ε2k ≤ (1 + ε)δh(s, v) (the last inequality follows from 2k ≤ δh(s, v)). Thus,

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 565

we have exhibited an s − v path in G∗
k of weight ≤ (1 + ε)δh(s, v), so certainly the

shortest s − v path in G∗
k will have weight ≤ (1 + ε)δh(s, v), as desired. Finally,

note that the weight of this path in Gk is at most (1 + ε)δh(s, v)/α ≤ 2·2k+1

ε2k/h
=

4h/ε, so running King’s algorithm up to d = �4h/ε	 in Gk will in fact find this
path.

We now show how to obtain an algorithm for h-SSSP by simply combining h-
SSSPk algorithms for different values of k. The most natural way to do this, however,
achieves a slightly worse dependence on O(Δ) than the one promised in Theorem 4:
O(Δ log(nR) log log(nR)). For the sake of intuition, we show in this section a simple
method for achieving this worse update time, and then show in the next section how
to reduce the dependence on Δ to O(Δ). Recall the definitions of c, C, and R from
section 2.

Lemma 7.3. If for any k we could maintain h-SSSPk in total update time T ,
then we would have an algorithm for h-SSSPk with total update time O(T log(nR)
log log(nR)).

Proof. All we do is maintain h-SSSPk for �log(c)� ≤ k ≤ �log(nC)	. The crux
is that if we then set δ′(s, v) = min{δ′k(s, v)}, we have the desired property δ(s, v) ≤
δ′(s, v) ≤ (1 + ε)δh(s, v). To see this, note that δ(s, v) can never be smaller than c
or larger than nC, so, in particular, there is some k between �log(c)� and �log(nC)	
for which 2k ≤ δh(s, v) ≤ 2k+1. For this value of k, we know that h-SSSPk outputs
δ′k(s, v) ≤ (1 + ε)δh(s, v), so it is certainly true that δ′(s, v) = mink{δ′k(s, v)} ≤
(1 + ε)δh(s, v). That δ′(s, v) ≥ δ(s, v) follows from the fact that every δ′k(s, v) is
≥ δ(s, v).

Thus, for each vertex v, our algorithm maintains a min-heap of all δ′k(s, v) for
�log(c)� ≤ k ≤ �log(nC)	. A query operation for δ′(s, v) simply returns the minimum
of this heap in O(1) time. An update operation on edge (x, y) is inputted into every
h-SSSPk, and whenever some δ′k(s, v) changes, we update the min-heap for δ′(s, v) in
O(log log(nR)) time. We maintain O(log(nR)) different h-SSSPk, so the total time
spent processing updates in the h-SSSPk is O(T log(nR)). This is also the bound
on how often some δ′k(s, v) can change, so the total time updating the min-heap
is O(T log(nR) log log(nR)). Together the two add to O(T log(nR) log log(nR)), as
desired.

Corollary 7.4. We can maintain h-SSSP in total time O(mh log(nR) log log ·
(nR)/ε+Δ log(nR) log log(nR)). This follows directly from the two preceding lemmas.
Note that in unweighed graphs R = 1 and Δ ≤ m, and so the running time is
O(mh log(n) log log(n)/ε), as promised in Theorems 3 and 4.

7.1. Limiting the dependence on Δ to O(Δ). In this section, we improve
the dependence on Δ in Corollary 7.4 to O(Δ), thus achieving the total update time
for unweighted graphs promised in Theorems 2 and 4. Note that although the h-
SSSP algorithm itself was used in Bernstein’s FOCS 2009 paper [3], in that paper the
implicit dependence on Δ was O(Δ log(nR) log log(nR)). Thus, the reduction to an
O(Δ) dependence on Δ is in fact new.

That being said, the improvement in this subsection is extremely technical and
not particularly interesting from a conceptual perspective. Moreover, it is not all
that important: using the simple h-SSSP algorithm presented in Lemma 7.3 and
Corollary 7.4 would yield a decremental APSP algorithm with total update time
Õ(mn logR/ε) + O(Δ log(nR) log log(nR)). The O(Δ log(nR) log log(nR)) term is
very unlikely to affect the asymptotic running time, especially as if it ever came
to dominate that would imply that we were achieving an amortized update time of

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

566 AARON BERNSTEIN

O(log(nR) log log(nR)), which is already very good. The reader would thus not lose
much in simply skipping the current section.

We now continue with the improvement to h-SSSP. Say that we are running the
h-SSSP algorithm up to hop-length h. Let us focus on processing a particular update
increase-weight(u, v), and let wold(u, v) and wnew(u, v), respectively, correspond to the
weights of (u, v) before and after the update (a deletion can be modeled by setting
wnew(u, v) = ∞). Since we are in a decremental setting, we know that wold(u, v) <
wnew(u, v). The naive way for h-SSSP to process increase-weight(u, v) is to process
this update in each of the h-SSSPk algorithms: there are O(log(nR)) different values
for k, so this would require a minimum of O(log(nR)) time. But note that there is no
reason to process this update in some particular h-SSSPk if we know that increase-
weight(u, v) has no chance of affecting δ′k(s, x) for any vertex x. Thus, our basic
approach is to only update increase-weight(u, v) in those h-SSSPk for which it might
be relevant.

Before proceeding, let us carefully pinpoint the different steps taken by the h-
SSSP algorithm, so that we can analyze the parts separately. The algorithm for
handling an update increase-weight(u, v) can be thought of as consisting of the three
operations below.

Running time breakdown.

1. Figure out for which h-SSSPk the update might be relevant, and register the
update in those h-SSSPk only.

2. Process the update in the chosen h-SSSPk, thus potentially changing various
δ′k(s, v). This is where the “real work” occurs.

3. Now that some of the δ′k(s, v) have changed, we must update δ′(s, v) =
mink{δ′k(s, v)}.

We have already analyzed the total time spent in Step 2 over all updates: each h-
SSSPk spends a total of O(mh/ε) time processing its updates, so since there are
O(log(nR)) possible values of k, among all h-SSSPk we have total update time
O(mh log(nR)/ε), as desired. For Steps 1 and 3 to be efficient, however, we must
modify the h-SSSP algorithm.

We start with Step 3. First let us bound how often the δ′k(s, v) might change.
Recall that h-SSSPk runs on a scaled graph Gk, where it only stores distances up
to distance �4h/ε	. Thus, since distances only increase, it is clear that for any par-
ticular v, δ′k(s, v) can change at most �4h/ε	 times. Summing over all vertices v,
and all the h-SSSPk, we see that in total over all updates there are O(nh log(R)/ε)
changes to the δ′k(s, v). The total time spent in Step 3 is thus O([nh log(nR)/ε] ·
[the time to update δ′(s, v) = mink{δ′k(s, v)} when some δ′k(s, v) changes]).

The second term of course depends on our data structure for updating δ′(s, v) =
mink{δ′k(s, v)}. The most natural option would be, for any particular v, to store all
the δ′k(s, v) in a min-heap. This heap would have O(log(nR)) elements and so update
time O(log log(nR)). This is not quite good enough, as it would imply a total time
of O(nh log(nR) log log(nR)/ε) spent in Step 3, which is not strictly contained in our
desired bound of O(mh log(n) log(nR)/ε). We now present a different data structure.

Lemma 7.5. Given any vertex v, and assuming that (1/ε) is at most polynomial in
n, we can build a data structure on the δ′k(s, v) that returns δ′(s, v) = mink{δ′k(s, v)}
in O(1) time and processes an increase to some δ′k(s, v) in O(log(n)) time.

Proof. The data structure is based on the following observation.

Observation. Let k′ be some index for which δ′k′(s, v) = ∞. Then, for any index
k∗ > k′ + 2 + log(h/ε) we always have that δ′(s, v) = δ′k∗(s, v).

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 567

This observation relies on the details of the h-SSSPk algorithm presented in the
proof of Lemma 7.2. For our index k′, h-SSSPk′ only runs up to distance �4h/ε	 on
the scaled graph Gk′ , so any path it finds will have length at most �4h/ε	 in Gk′ . It is
clear from how h-SSSPk performs the scaling that any edge weight in G′

k is no larger

than the corresponding edge weight in G divided by ε2k
′
/h; thus, the unscaled length

in G of any path found by h-SSSPk is at most (�4h/ε)·(ε2k′
/h) ≤ 2k

′+2+2k
′
< 2k

′+3,
so δ′k′(s, v) = ∞ implies that δ′(s, v) ≤ δ′k′ (s, v) < 2k

′+3. But now, looking at k∗, we
see that we always have δ′k∗(s, v) ≥ ε2k

∗
/h because we scale each edge weight up to

the nearest multiple of ε2k
∗
/h. Thus, if k∗ > k′ + 2 + log(h/ε), then since k∗ is an

integral index we have k∗ ≥ k′+3+ log(h/ε), so δ′k∗(s, v) ≥ ε2k
∗
/h ≥ 2k

′+3 > δ′(s, v),
so δ′(s, v) = δ′k∗(s, v), as desired.

Data structure. The data structure is very simple: we keep the δ′k(s, v) in a linked
list, sorted in increasing order of k (not in increasing order of δ′k(s, v)). We also
maintain a pointer to the minimum δ′k(s, v) in the list. We can return δ′(s, v) in O(1)
time by following the min-value pointer, so we now focus on updates to the δ′k(s, v).
We will always throw away any δ′k(s, v) for which δ′k(s, v) = ∞, so the head of the
list will be the first entry for which δ′k(s, v) = ∞. Thus, by the observation above we
know that δ′(s, v) = mink{δ′k(s, v)} will always be within k′+2+log(h/ε) = O(log(n))
entries from the head (we are assuming that (1/ε) is at most polynomial in n). After
some increase-weight(x, y), some of the δ′k(s, v) values may be increased. To process
these increases, we first update the δ′k(s, v) in our list (we can trivially maintain
pointers that will allow us to do this). We then go through the list, starting from
the head, and delete any δ′k(s, v) that has come to equal ∞; since distances only
increase, once δ′k(s, v) = ∞ for some index k, it will continue to be ∞ in the future,
so we can safely throw it away. We stop when we reach the first δ′k(s, v) = ∞. By
the observation above we can now find the minimum by comparing this first entry
and the k′ + 2 + log(h/ε) = O(log(n)) entries that come after it, and then update
our min-value pointer. It is clear that the update time per δ′k(s, v)-increase is just
O(log(n) + [number of δ′k(s, v) deleted]). For a fixed v, the second term amounts to
a total of O(log(nR)) over all updates, since that is the number of possibilities for k.
Summed over all vertices v, this yields an extra O(n log(nR)) total time for h-SSSP,
which is well within our O(mh log(n) log(nR)/ε) time bound. We can thus maintain
δ′(s, v) in time O(log(n)) time per change to δ′k(s, v).

The total time spent in Step 3 (see running time breakdown above) is thus
O([nh log(nR)/ε] · [the time to update δ′(s, v)]) = O([nh log(nR)/ε] · [log(n)]) =
O(nh log(n) log(nR)/ε), which is within our desired O(mh log(n) log(nR)/ε) time
bound.

All we have left is to analyze the total time spent in Step 1 of the running time
breakdown above. This will take some work. Let us focus on h-SSSPk for some
particular value of k. Recall that given update increase-weight(u, v), h-SSSPk starts
by scaling the weight of (u, v) in Gk. The first two steps are as follows:

• If wnew(u, v) > 2k+1, h-SSSPk deletes it from Gk.
• Scale wnew(u, v) up to the nearest multiple of ε2k/h.

Thus, it is easy to see that if wold(u, v) > 2k+1 or if wold(u, v) and wnew(u, v) both
scale up to the same multiple of ε2k/h, then there is no need to process increase-
weight(u, v) in h-SSSPk as it will not affect Gk in any way. This motivates the
following definitions. Recall that h is the hop-length to which we are running the
h-SSSP algorithm in question.

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

568 AARON BERNSTEIN

Definition 7.6. Let α = ε/h. Given an integer k ∈ [�log(c)� , �log(nC)], we
say that a positive real number ζ is k-marked if both of the following properties hold:

1. ζ is an integer multiple of 2kα = ε2k/h.
2. ζ < 2k+1.

We say that a number is marked if it is k-marked for at least one value of k.

Lemma 7.7. Say that we are given an update increase-weight(u, v): wold(u, v) →
wnew(u, v) (an edge deletion just increases the weight to ∞). This update affects
an h-SSSPk algorithm only if there is a k-marked number in the half-open interval
[wold(u, v), wnew(u, v)). We will refer to such an update as crossing the k-marked
number.

Proof. This lemma stems directly from our previous discussion. The only way
for increase-weight(u, v) to change a weight in Gk is if wold(u, v) ≤ 2k+1 and if
wold(u, v) and wnew(u, v) scale up to different multiples of ε2k/h = α2k. This is
equivalent to the requirement that there is a k-marked number in the half-open in-
terval [wold(u, v), wnew(u, v)).

Lemma 7.8. For any integer k ∈ [�log(c)� , �log(nC)] there are 2h/ε = 2/α
k-marked numbers, for a total of 2h log(nR)/ε marked numbers. (Recall that we are
focusing on a particular h-SSSP algorithm running up to hop-length h, so h is fixed.)

Proof. For any integer k ∈ [�log(c)� , �log(nC)], the k -marked numbers are all
the positive multiples of α2k that are ≤ 2k+1. It is easy to see that there are exactly
2k+1/(α2k) = 2/α = 2h/ε of these. There are log(nC) − log(c) = log(nR) different
possible values for k, yielding a total of 2h log(nR)/ε marked numbers.

Lemma 7.9. Given a marked number ζ, there are O(log(n)) values of k for which
ζ is k-marked, and we can find all of them in O(log(n)) time.

Proof. If ζ is marked, it must be k -marked for at least one k, so there must be some
k such that ζ is an integer multiple of 2kα that is less than 2k+1. In particular, for
that value of k we must have 2kα ≤ ζ ≤ 2k+1. Taking logs yields k + log(α) ≤ log(ζ)
and log(ζ) ≤ k + 1; the first inequality then yields k ≤ log(ζ) − log(α), while the
second yields log(ζ)− 1 ≤ k. All in all we thus have

log(ζ) − 1 ≤ k ≤ log(ζ)− log(α),

so we only have to consider integers k in interval [log(ζ) − 1, log(ζ) − log(α)] (note
that log(α) = log(ε/h) is negative). This interval contains at most 1 − log(α) ≤
1+ log(h/ε) = O(log(n)) integers k, and for each such k we can check in O(1) time if
ζ is an integer multiple of 2kα.

We can now give an intuition for our algorithm. Recall from Lemma 7.7 that an
update increase-weight(u, v) only needs to be processed by some h-SSSPk if it crosses a
k -marked number. By Lemma 7.9 each marked number is k -marked for only O(log(n))
values of k. Thus, an update increase-weight(u, v) must be processed by O(log(n))
h-SSSPk algorithms for every marked number that it crosses. But since weights only
increase, they go through each marked number exactly once, so by Lemma 7.8, all the
updates on a single edge (u, v) go through a total of O(h log(nR)/ε) marked numbers.
Thus, over all weight increases on a single edge (u, v), the total number of updates to
the h-SSSPk algorithms is O(log(n)) ·O(h log(nR)/ε) = O(h log(n) log(nR)/ε). Thus,
over all edges, the total number of times that an update affects some h-SSSPk and
must be further processed is O(mh log(n) log(nR)/ε); since each h-SSSPk algorithm
only needs an additional O(1) time per update (the O(Δ) term in Lemma 7.2), this
does not exceed our overall O(mh log(n) log(nR)/ε) time bound for h-SSSP. We now

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 569

have to show that it only takes us O(1) per update to determine which h-SSSPk an
update should be processed in.

Lemma 7.10. Given an update increase-weight(u, v): wold(u, v) → wnew(u, v),
we can find the smallest marked number of [wold(u, v), wnew(u, v)) (if it exists) in O(1)
time.

Proof. By the definition of k -marked (Definition 7.6), it is clear that if there is
to be a k -marked number in [wold(u, v), wnew(u, v)) (for some k), then we must have
that wold(u, v) ≤ 2k+1. Thus, k0 = �log(wold(u, v))	 is the very smallest value of k for
which [wold(u, v), wnew(u, v)) might contain a k -marked number. Moreover, for any
k′ > k0, an integer multiple of 2k

′
α is obviously an integer multiple of 2kα. Thus,

the smallest marked number of [wold(u, v), wnew(u, v)) is simply wold(u, v) rounded
up to the nearest multiple of 2k0α, which we can find in O(1) time (if this nearest
multiple of wold(u, v) is ≥ wnew(u, v), then there is no k -marked number in interval
[wold(u, v), wnew(u, v))).

The improved h-SSSP algorithm.

We now present our algorithm for processing an update increase-weight(u, v):
wold(u, v) → wnew(u, v) in such a way as to only update the relevant h-SSSPk. Note
that the actual processing of an update in a particular h-SSSPk is no different than
before, so we simply follow the algorithm presented in Lemma 7.2. The set S will end
up containing all indices k for which increase-weight(u, v) affects h-SSSPk.

1. While(True)
(a) Use Lemma 7.10 to find the smallest marked number ζ in [wold(u, v),

wnew(u, v)). If no marked number exists in this interval, terminate loop;
go to Step 2.

(b) Use Lemma 7.9 to find all k for which ζ is k -marked, and add them to S.
(c) Start over from Step 1, but this time process increase-weight(u, v): ζ →

wnew(u, v).
2. For all k ∈ S, process the update increase-weight(u, v): wold(u, v) → wnew(u, v)

in h-SSSPk.
3. Update the δ′(s, x) = min{δ′k(s, x)} for all affected vertices x.

Analysis. Correctness follows directly from Lemma 7.7. Let us examine the time
to process a particular update increase-weight(u, v). Recall that everything written
in this section is about determining which h-SSSPk are affected by the update; once
we decide to process the update in a particular h-SSSPk, it is processed in exactly the
same way as in section 7. Thus, as in the running time breakdown above, the overall
running time of our algorithm consists of three components:

1. The time spent determining which updates increase-weight(u, v) should be
processed by which h-SSSPk, i.e., the loop of Step 1 above.

2. The time spent actually processing the updates, i.e., Step 2 above.
3. The time spent updating δ′(s, v) = min{δ′k(s, v)}.

We showed at the beginning of this section that Steps 2 and 3 are both within our
Õ(mh logR/ε) time bound (see “running time breakdown” above). We now bound
the time spent on the while loop of Step 1. Running the algorithm of Lemma 7.10 in
1(a) to find a marked number only takes O(1) time, but then running the algorithm of
Lemma 7.9 in 1(b) takes O(log(n)) time, even though in the end we may discover that
the marked number ζ is in fact only k -marked for a single value of k. Thus, the running
time of the loop for a single update increase-weight(u, v) is O(1), plus an additional
log(n) for every marked number crossed by increase-weight(u, v). Because we are in
a decremental setting, all the weight increases of any particular edge (u, v) only go

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

570 AARON BERNSTEIN

through each marked number once, so by Lemma 7.8, all of the different edge updates
combined cross a total of only O(mh log(nR)/ε) marked numbers, so the total spent in
the while loop over all updates to the h-SSSP algorithm is O(mh log(n) log(nR)/ε+
Δ), as desired. We have thus proved Theorem 3.

8. Final touches.

8.1. Removing the assumption that we know R in advance. Recall from
section 2 that we define c to be the lightest edge weight to appear in the graph at any
point in the update sequence and C to be the heaviest such edge weight. We define
R = C/c. Since edge weights only increase, c is just the lightest edge weight in the
original graph, before any updates occur, so we know it from the start. C, however,
can keep increasing, and as presented, our algorithm requires an a priori upper bound
on C in order to run the right h-SSSPk algorithms: each h-SSSP algorithm consists
of running an h-SSSPk algorithm for �log(c)� ≤ k ≤ �log(nC)	 (see Definition 7.1 and
Lemma 7.3 in section 7 for a description of h-SSSPk). We show in this section that
we do not actually need to know C ahead of time and can instead just continually
update our current bound on C.

At any point in the update sequence, define C∗ to be the largest edge weight
seen so far, and note that C∗ ≤ C. Recall from section 7 that we create algo-
rithm h-SSSPk to handle distances between 2k and 2k+1, and that h-SSSP returns
δ′(s, v) = min{δ′k(s, v)}, where δ′k(s, v) is the (s, v)-distance returned by h-SSSPk.
But all distances in the current graph are less than nC∗, so we have no need for h-
SSSPk as long as 2k > nC∗; that is, for k > �log(nC∗)	, we can think of δ′k(s, v) = ∞.
Thus, instead of immediately creating h-SSSPk for all �log(c)� ≤ k ≤ �log(nC)	, we
just create them for �log(c)� ≤ k ≤ �log(nC∗)	. Then, as C∗ increases with updates,
we start running h-SSSPk as soon as k becomes ≤ �log(nC∗)	, and we add δ′k(s, v) to
the heap for δ′(s, v).

It is easy to see that the running time of this new method is no worse than if we
knew C in advance and set up all the h-SSSPk from the beginning (for �log(c)� ≤
k ≤ �log(nC)). It is in fact slightly faster, as we avoid processing updates that occur
while k > �log(nC∗)	.

8.2. The incremental setting. As presented, our algorithm works in the decre-
mental setting, where we have only deletions and weight increases. However, like
many other decremental algorithms, our algorithm can be made to run in the incre-
mental setting with only the smallest of modifications. That is, it can process either
a sequence of deletions/weight-increases or a sequence of insertions/weight-decreases,
though certainly not a sequence of both.

Most of the description of our algorithm deals with the various graphs and short-
cut edges that we construct. Yet when it comes to dynamically processing the up-
dates, all the work is done by the various h-SSSP algorithms running on these different
graphs. The h-SSSP algorithm is in turn composed of h-SSSPk algorithms. So in the
end, our algorithm is merely a large collection of different h-SSSPk algorithms.

But the h-SSSPk algorithm simply runs King’s algorithm for maintaining a short-
est path tree, which, as has been observed in many previous papers, runs equally well
in the incremental setting. This is evident from Theorem 2: the theorem itself works
in the fully dynamic setting, and it is only the corollary which required a decremental
setting in order to bound the total number of distance changes. This bound, however,
holds equally well in the incremental setting: as long as distances only ever change in
one direction (increase or decrease), the total number of changes between 1 and d is
at most d.

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 571

Thus, our algorithm can be made to run in the incremental setting by simply
switching all of the constituent h-SSSPk algorithms to run in the incremental setting.
Everything else remains unchanged: the various graphs Gv,k, the shortcut edges, the
approximation analysis, etc. There are only two minor points worth noting:

• Recall that our algorithm constructs many different graphs, and so an update
in G can proliferate into multiple updates on multiple graphs. We argued that
we could nonetheless run h-SSSP on these different graphs because although
the update sequence differs from the perspective of each graph, it is always
decremental: shortcut weights correspond to distances in the original graph,
so since distances only increase, shortcut weights only increase. A symmetric
claim is true of the incremental setting: since distances in the original graph
only decrease, shortcut weights also only decrease, so the update sequence is
incremental from the perspective of all the different graphs.

• In section 8.1 we argued that while c remains fixed, C increases over time,
so our decremental algorithm kept an upper bound on C in order to have an
estimate on R. In the incremental setting, it is C that is fixed and c that
changes, so we instead keep a lower bound on c.

8.3. A fully dynamic algorithm. There is a standard algorithm for trans-
forming any decremental algorithm for APSP or directed transitive closure into a
fully dynamic algorithm with query-update trade-offs. The fastest update times we
know how to achieve in the fully dynamic setting often stem from this technique,
though at the often unacceptable cost of a polynomial query time. The technique
was first introduced in a paper by Henzinger and King [9] on dynamic transitive
closure and has since been used in several papers on dynamic shortest paths and
dynamic transitive closure (see, e.g., [15], [14], [12]). Our application of the tech-
nique is completely identical to the one used in the cited papers, but as far as we
know, none of those papers presented the result in quite sufficient enough gener-
ality for it to apply directly to our case. We thus reconstruct the technique from
scratch, stating it in the most general terms possible (note that transitive closure
is a special case of α-approximate APSP). Recall that π(x, y) is the shortest path
from x to y in the current version of the graph and that δ(x, y) is the length of
this path.

Theorem 5 (see [9]). Given a decremental algorithm D for α-approximate APSP
with total update time Λ over all updates and query time O(q), for any positive integer
t we can construct a fully dynamic algorithm for α-approximate APSP with amortized
update time O(Λ/t + (m + n log(n))t) and query time O(t + q). The fully dynamic
algorithm admits the following batch updates in the same O(Λ/t + (m + n log(n))t)
amortized time per update:

• Batch delete. Delete or increase the weight of an arbitrary set of edges E′.
• Centered batch insert. Insert or decrease the weight of a group of edges Ev

that are all incident to some vertex v.
Corollary 8.1. Given our (randomized) Õ(mn logR/ε) decremental algorithm

for (1 + ε)-approximate APSP in directed weighted graphs, we can build a fully dy-

namic (randomized) algorithm with amortized update time Õ(mn logR
εt) and query time

O(t) for any 1 ≤ t ≤ √
n. Previously such a result was known only for undirected

unweighted graphs.
Proof of Theorem 5. We use the decremental algorithm D as a black box to

build the desired fully dynamic algorithm. Let D(u, v) be the α-approximate shortest
distance from u to v returned by algorithm D.

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

572 AARON BERNSTEIN

Initialization.
• Initialize the decremental algorithm D on the starting graph G. This com-
putes α-approximate APSP in G and maintains this information over all
deletions to come.

• Create an empty list I which will contain the vertices affected by insertions.
• Create a counter C for the number of updates so far. Start with C = 0.

Batch-insertion(Ev).
• If C > t, restart the entire algorithm. That is, set C = 0, delete all elements
from I, and reinitialize the decremental algorithm D on the current version
of the graph. Else, set C = C + 1 and continue.

• Add v to I.
• For every vertex x ∈ I use Dijkstra’s algorithm to compute single source
shortest distances to and from x.

Batch-delete(E′).
• If C > t, restart the entire algorithm. That is, set C = 0, delete all elements
from I, and reinitialize the decremental algorithm D on the current version
of the graph. Else, set C = C + 1 and continue.

• Process all the deletions in the decremental algorithm D. This of course
changes the various D(u, v).

• For every vertex x ∈ I use Dijkstra’s algorithm to compute single source
shortest distances to and from x.

Query(u, v).
• Let I(u, v) = minx∈I(δ(u, x) + δ(x, v)).
• Return δ′(u, v) = min{I(u, v), D(u, v)}.

Correctness proof. Note that when we compute I(u, v) = minx∈I(δ(u, x)+δ(x, v))
we know both δ(u, x) and δ(x, v) because after each update we compute shortest paths
to and from each vertex in I. Thus, I(u, v) contains the length of the shortest path
from u to v that goes through one of the vertices in I. If π(u, v) contains a vertex
from I, our query algorithm outputs δ′(u, v) = I(u, v) = δ(u, v). If π(u, v) does not
use any vertex in I, then the entire path π(u, v) exists in the graph GD, which is
the graph G subjected to all the deletions in our update sequence and none of the
insertions. Since the decremental algorithm D is running precisely on GD, D(u, v)
is guaranteed to return an α-approximation to δ(u, v). In either case, we have that
δ′(u, v) = min{I(u, v), D(u, v)} is an α-approximation to δ(u, v), as desired.

Running time analysis. The fully dynamic algorithm runs for exactly t updates
before restarting. Since the total update time of the decremental algorithm D is Λ,
the amortized time for a single update is thus O(Λ/t). Each update inserts exactly one
vertex into I, so we always have |I| ≤ t. Each update also requires us to run Dijkstra’s
algorithm to and from each vertex in I, which takes time O((m + n log(n))|I|) =
O((m+ n log(n))t). The amortized update time is thus O(Λ/t+ (m+ n log(n))t), as
desired.

Each query requires us to compute δ(u, x) + δ(x, v) for every x ∈ I. Each such
value can be computed in O(1) since we already know δ(u, x) and δ(x, v). The query
algorithm also spends O(q) time queryingD(u, v). The query time is thus O(|I|+q) =
O(t+ q), as desired.

9. Open problems. Our algorithm achieves the desired Õ(mn/ε) total update
time in directed graphs with polynomial weights, as compared to the previous state
of the art of Roditty and Zwick [14], which only achieved Õ(mn/ε) for undirected

unweighted graphs. We cannot really hope to beat total update time Õ(mn), as this is

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

DYNAMIC SHORTEST PATHS IN WEIGHTED DIRECTED GRAPHS 573

the running time of the fastest combinatorial algorithms for the much simpler problem
of static APSP. But there still remain many open problems concerning decremental
shortest paths.

• Can we achieve total update time Õ(mn) for decremental exact APSP? This
would be interesting even in unweighted, undirected graphs. Currently, the
best known algorithm is that of Baswana, Hariharan, and Sen [2], which

achieves total update time Õ(n3) in directed unweighted graphs.
• Bernstein and Roditty [6] showed that in undirected unweighted graphs, one
can achieve total update time O(n3−ε) if one allows a constant approximation.
Henzinger et al. [10] later improved upon this result; their algorithm could

maintain (2 + ε)-approximate APSP in total update time Õ(n2.5). Can one
achieve something similar for directed graphs?

• Our algorithm is the first decremental shortest paths algorithm to work on
weighted graphs, but it still carries a logR factor. Very recently, Henzinger,
Krinninger, and Nanongkai presented an algorithm for weighted undirected
graphs that can maintain an approximate shortest path tree under deletions
in near-linear total update time [11], but the logR factor remains. Is it
possible to remove this? Such a result would be interesting for even the most
basic possible problem of maintaining a (1+ ε)-approximate shortest path for
a single s − t pair in an undirected graph. Can we maintain this s − t path
in total update time Õ(mn) on a graph with arbitrary real edge weights?

• For static APSP, we can beat the O(mn) bound in dense graphs by using
fast matrix multiplication. Is it possible to extend these techniques to the
dynamic case and achieve total update time O(n3−ε) over all deletions?

• Our decremental APSP algorithm is randomized. Very recently, Henzinger,
Krinninger, and Nanongkai showed that in undirected unweighted graphs we
can achieve total update time Õ(mn/ε) with a deterministic algorithm [10].
Can we achieve a similar result for directed graphs, or graphs with weights
polynomial in n? Note that deterministic algorithms are especially important
in the dynamic setting, because they do not require the assumption of an
oblivious adversary; none of the existing randomized algorithms can be used
in a setting with an adaptive adversary that sees the choices made by the
algorithm and adapts the update sequence accordingly.

Acknowledgment. I would like to thank my advisor Cliff Stein for a great
number of helpful suggestions.

REFERENCES

[1] I.Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck, Highway dimension, shortest
paths, and provably efficient algorithms, in Proceedings of the 21st SODA, Austin, TX,
2010, pp. 782–793.

[2] S. Baswana, R. Hariharan, and S. Sen, Improved decremental algorithms for maintaining
transitive closure and all-pairs shortest paths, J. Algorithms, 62 (2007), pp. 74–92.

[3] A. Bernstein, Fully dynamic approximate all-pairs shortest paths with constant query and
close to linear update time, in Proceedings of the 50th FOCS, Atlanta, GA, 2009, pp. 50–
60.

[4] A. Bernstein, Near linear time (1+ε)-approximation for restricted shortest paths in undirected
graphs, in Proceedings of the 23rd SODA, Kyoto, Japan, 2012, pp. 189–201.

[5] A. Bernstein, Maintaining shortest paths under deletions in weighted directed graphs (ex-
tended abstract), in ACM STOC, 2013, pp. 725–734.

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

574 AARON BERNSTEIN

[6] A. Bernstein and L. Roditty, Improved dynamic algorithms for maintaining approximate
shortest paths under deletions, in Proceedings of the 22nd SODA, San Francisco, CA, 2011,
pp. 1355–1365.

[7] C. Demetrescu and G. F. Italiano, A new approach to dynamic all pairs shortest paths, J.
ACM, 51 (2004), pp. 968–992.

[8] S. Even and Y. Shiloach, An on-line edge deletion problem, J. ACM, 28 (1981), pp. 1–4.
[9] M. Henzinger and V. King, Fully dynamic biconnectivity and transitive closure, in Proceed-

ings of the 36th FOCS, Milwaukee WI, 1995, pp. 664–672.
[10] M. Henzinger, S. Krinninger, and D. Nanongkai, Dynamic approximate all-pairs short-

est paths: Breaking the o(mn) barrier and derandomization, in IEEE FOCS 2013, 2013,
pp. 538–547.

[11] M. Henzinger, S. Krinninger, and D. Nanongkai, Decremental single-source shortest
paths on undirected graphs in near-linear total update time, in IEEE FOCS 2014, 2014,
pp. 146–155.

[12] V. King, Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive
closure in digraphs, in IEEE FOCS, 1999, pp. 81–91.

[13] G. Ramalingam and T. Reps, An incremental algorithm for a generalization of the shortest-
path problem, J. Algorithms, 21 (1996), pp. 267–305.

[14] L. Roditty and U. Zwick, Dynamic approximate all-pairs shortest paths in undirected graphs,
in Proceedings of the 45th FOCS, Rome, Italy, 2004, pp. 499–508.

[15] L. Roditty and U. Zwick, Improved dynamic reachability algorithms for directed graphs,
SIAM J. Comput., 37 (2008), pp. 1455–1471.

[16] L. Roditty and U. Zwick, On dynamic shortest paths problems, Algorithmica, 61 (2011),
pp. 389–401.

[17] P. Sankowski, Subquadratic algorithm for dynamic shortest distances, in Proceedings of the
11th COCOON, Kunming, China, 2005, pp. 461–470.

[18] M. Thorup, Compact oracles for reachability and approximate distances in planar digraphs,
J. ACM., 51 (2004), pp. 993–1024.

D
ow

nl
oa

de
d

10
/1

9/
17

 to
 1

30
.1

49
.1

5.
12

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

