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Abstract

Maximum cardinality matching is a fundamental algorithmic
problem with many algorithms and applications. The fully
dynamic version, in which edges are inserted and deleted
over time has also been the subject of much attention. Ex-
isting algorithms for dynamic matching (in general n-vertex
m-edge graphs) fall into two groups: there are fast (mostly
randomized) algorithms that achieve a 2-approximation or
worse, and there are slow algorithms with Ω(

√
m) update

time that achieve a better-than-2 approximation. Thus the
obvious question is whether we can design an algorithm that
achieves a tradeoff between these two: a o(

√
m) update

time and a better-than-2 approximation simultaneously. We
answer this question in the affirmative. Previously, such
bounds were only known for the special case of bipartite
graphs.

Our main result is a fully dynamic deterministic algo-
rithm that maintains a (3/2 + ǫ)-approximation in amor-

tized update time O(m1/4ǫ−2.5). In addition to achieving
the trade-off described above, our algorithm manages to
be polynomially faster than all existing deterministic algo-
rithms (excluding an existing logn-approximation of Onak
and Rubinfeld), while still maintaining a better-than-2 ap-
proximation.

We also give stronger results for graphs whose arboricity
is at most α. We show how to maintain a (1 + ǫ)-
approximate fractional matching or a (3/2+ ǫ)-approximate
integral matching in worst-case time O(α(α + log n)) for
constant ǫ. When the arboricity is constant, this bound
is O(logn) and when the arboricity is polylogarithmic the
update time is also polylogarithmic. Previous results for
small arboricity non-bipartite graphs could only maintain a
maximal matching (2-approximation).

We maintain the approximate matching without explic-
itly using augmenting paths. We define an intermediate
graph, called an EDCS and show that the EDCS H contains
a large matching, and show how to maintain an EDCS in G.
The EDCS was used in previous works on bipartite graphs,
however the details and proofs are completely different in
general graphs. The algorithm for bipartite graphs relies on
ideas from flows and cuts to non-constructively prove the
existence of a good matching in H, but these ideas do not
seem to extend to non-bipartite graphs. In this paper we in-
stead explicitly construct a large fractional matching in H.
In some cases we can guarantee that this fractional matching
is γ-restricted, which means that it only uses values either in
the range [0, γ] or 1. We then combine this matching with
a new structural property of maximum matchings in non-
bipartite graphs, which is analogous to the cut induced by
maximum matchings in bipartite graphs.
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1 Introduction

Matching is a classical problem, with a variety of
applications (e.g. [14, 7]), and many algorithms. In this
paper, we study a variant of the maximum cardinality
matching problem in which the goal is to maintain a
near-maximum matching in a dynamic graph that is
changing over time. More formally, we are working
in the fully dynamic setting, in which we are given
a graph G and a sequence of edge insertions and
deletions. Our goal is to design an algorithm that
always maintains a near-maximum matching for the
current graph. With each insertion or deletion, we could
recompute a matching from scratch in O(

√
nm) time

[15, 21], but it is more efficient to take advantage of the
fact that only one edge has changed. For example, it
would suffice to compute at most one augmenting path
to update the matching.

Some of our results are for small-arboricity graphs,
which we define here. The arboricity of a graph, denoted

by α(G) is maxJ
|E(J)|
V (J)−1 where J = (V (J), E(J)) is any

subgraph of G induced by at least two vertices. Many
classes of graphs in practice have constant arboricity,
including planar graphs, graphs with bounded genus
and graphs with bounded tree width. Every graph has
arboricity O(

√
m).

1.1 Previous Work There is a great deal of work
on matchings. We describe previous work on dynamic
matching in detail below, but first we briefly mention
the related problems of finding approximate and online
matchings. Duan and Pettie showed how to find a
(1 + ǫ)-approximate weighted matching in nearly linear
time [6]; their paper also contains an excellent summary
of the history of matching algorithms. There are many
papers on “online matching” (e.g. [14, 7]), both exact
and approximate. This model also involves edges being
added to the graph, but is in other ways very different
from the dynamic model: in online matching there are
no deletions, the matching cannot be altered, and the
quality of the algorithm is judged by its competitiveness
to the optimal offline algorithm. A related measure is
the number of changes needed to maintain a matching
[5, 8, 4].

Fully dynamic matching algorithms can be classified
by update time, approximation ratio, whether they are
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randomized or deterministic and whether they have a
worst-case or amortized update time. The distinction
between deterministic and randomized is particularly
important in the dynamic setting as all of the existing
randomized algorithms for dynamic matching (as well
as for many other problems on dynamic graphs) assume
a weaker model. The key idea behind the randomized
matching algorithms is that if the algorithm chooses a
random matching in a dense graph then the probability
of an update deleting an edge in the matching is very
small. This approach, however, only functions under
the assumption that the adversary is non-adaptive; that
is, the update sequence must be fixed in advance, or
put otherwise, it must be completely independent of
matching maintained by the algorithm. This extra
assumption on the model makes the existing randomized
algorithms inadequate in certain settings, such as those
in which the dynamic matching algorithm is a black-
box subroutine inside a larger data structure (unless of
course one can separately ensure that the subroutine is
used non-adaptively).

For maintaining an exact maximum matching in
the fully dynamic setting, the best known update time
is O(n1.495) (Sankowski [19]), which in dense graphs
is much faster than reconstructing the matching from
scratch. Most work on dynamic matching shows how
to obtain faster update times than O(n1.495) if we allow
approximation. One relevant line of work focuses on
approximation ratios 2 or worse. 2 is a significant “bar-
rier” because a straightforward greedy algorithm main-
tains a maximal matching (which is a 2-approximation
to the maximum matching) in O(n) time per update,
and potentially using only local operations. Ivkovic and
Lloyd [11] showed how to improve the update time to

O((m + n)
√
2/2). Onak and Rubinfeld [18] were the

first to achieve truly fast update times, with a ran-
domized algorithm that maintains a O(1)-approximate
matching in amortized update timeO(log2 n) time (with
high probability). Baswana et al.[1] gave a faster ran-
domized algorithm that maintains a maximal matching
(2-approximation) in amortized update O(log n) time
per update. These two algorithms are extremely fast,
but are inherently randomized. In addition, their tech-
niques focus on local changes, and are unlikely to break
through the barrier of a 2-approximation. Recently,
Bhattacharya, Henzinger, and Italiano [3] presented a
deterministic algorithm with worst-case update time
O(m1/3ǫ−2) that maintains a (4+ǫ) approximation; this
can be improved to (3 + ǫ) at the cost of introducing
amortization. In the same paper they present a de-
terministic algorithm with amortized update time only
O(ǫ−2 log n) that maintains a (2 + ǫ) fractional match-
ing. Finally, Neiman and Solomon [17] showed that, in

graphs of constant arboricity, we can maintain a max-
imal (so 2-approximate) matching in amortized time
O(log n/ log logn, or worst-case time O(log n) using. a
recent dynamic orientation algorithm of Kopelowitz et
al.[12].

Another line of work gives approximation ra-
tios better than 2, but with running times that are
Ω(m1/2). Neiman and Solomon [17] gave a deter-
ministic, worst-case algorithm for maintaining a 3/2-
approximate matching, with an update time of O(

√
m).

Gupta and Peng [9] later improved upon the approxi-
mation, presenting a deterministic algorithm that main-
tains a (1 + ǫ)-approximate matching in worst-case up-
date time O(

√
mǫ−2) (the same paper achieves an anal-

ogous result for maintaining a near-maximum weighted
matching in weighted graphs). The two deterministic
algorithms are strongly tethered to the

√
m bound and

do not seem to contain any techniques for breaking past
it.

For the special case of bipartite graphs, Bernstein
and Stein [2] recently gave algorithms that maintain
a (3/2 + ǫ)-approximation in worst-case update time
O(m1/4ǫ−2.5) and a (1 + ǫ) approximation in worst-
case time O(α(α+ log n)) for constant ǫ in graphs with
arboricity α.

Very recently there have been some conditional
lower bounds for dynamic approximate matching.
Kopelowitz et al.[13] show that assuming 3-sum hard-
ness any algorithm that maintains a matching in which
all augmenting paths have length at least 6 requires an
update time of Ω(m1/3 − ζ) for any fixed ζ > 0. Hen-
zinger et al. [10] show that such an algorithm requires
Ω(m1/2 − ζ) time if one assumes the Online Matrix-
Vector conjecture.

Despite all this work, the problem of designing an
algorithm that simultaneously achieves an update time
of o(

√
m) and an approximation better than 2 remained

open for general graphs.

1.2 Results

Theorem 1.1. Let G be a graph subject to a series
of edge insertions and deletions, and let ǫ < 1. We
can maintain a (3/2+ ǫ)-approximate matching in G in
deterministic amortized update time O(m1/4ǫ−2.5).

Even allowing randomization, this result is the first al-
gorithm in general (non-bipartite) graphs to achieve
o(
√
m) update time and a better-than-2 approximation.

The algorithm is also faster than all previous determin-
istic O(1)-approximation algorithms in general graphs.
Also, since m1/4 = O(

√
n), our algorithm is the first to

achieve a better-than-2 approximation in time strictly
sublinear in the number of nodes.
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For small arboricity graphs we also show how to
break through the maximal matching (2-approximation)
barrier and achieve the following:

Theorem 1.2. Let G be a graph subject to a series of
edge insertions and deletions, and let ǫ < 1. Say that
at all times G has arboricity at most α. Then, we
can maintain a (3/2 + ǫ)-approximate matching in G
in deterministic amortized update time O(α(α+ logn+
ǫ−2) + ǫ−6). For constant α and ǫ the update time is
O(log n), and for α and ǫ polylogarithmic the update
time is polylogarithmic.

Theorem 1.3. Let G be a graph subject to a series of
edge insertions and deletions, and let ǫ < 1. Say that at
all times G has arboricity at most α. Then, we can
maintain a (1 + ǫ)-approximate fractional matching
in G in deterministic amortized update time O(α(α +
log n+ ǫ−4) + ǫ−6).

Our algorithms introduce the (as far as we can tell)
new notion of a γ-restricted fractional matching, and
prove an accompanying theorem which we believe might
be of independent interest.

Definition 1. A γ-restricted fractional matching is a
fractional matching assigning values to the edges such
that for all edges e, value(e) is either 1 or in the interval
[0, γ].

It is well known that there always exists a maximum
fractional matching with values 0, 1/2 or 1 [20] (i.e.
a 1/2-restricted fractional matching). Moreover, the
support of this matching contains an integral matching
of at least 2/3 the value of the fractional matching. We
prove a generalization of this second fact for smaller γ.

Theorem 1.4. Given a graph G, let Mf be a γ-
restricted fractional matching, and let M be a maximum
integral matching in the graph formed by edges in the
support of Mf . Then |M | ≥ value(Mf )

1
γ+1 .

Observe that this bound is tight when γ = 1/c for
some even c. Consider a clique on c + 1 vertices. The
fractional solution places value 1/c on each edge and has
total weight

(

c+1
2

)

/c = (c+ 1)/2. But the best integral
matching has c/2 edges.

Comparison to Results on Bipartite Graphs

The statements (but not the proofs) of many of the
theorems in this paper directly correspond to theorems
in Bernstein and Stein’s paper on bipartite graphs [2].
However, the shift to non-bipartite graphs requires com-
pletely different proofs for all the theorems involved, and
different algorithms. As an analogy, consider matching
in a static graph. In both bipartite and non-bipartite

graphs, an algorithm that repeatedly augments along a
maximal set of shortest paths yields a running time of
O(

√
nm), but the details (e.g. blossoms, finding paths,

data structures), analysis, and ease of understanding
(teachable in class vs. years to provide a complete
proof) are completely different. In dynamic graphs, we
have a similar situation.

We provide a brief discussion of some of the differ-
ences here. In both bipartite and non-bipartite graphs,
we use an intermediate graph H, called an edge degree
constrained subgraph (EDCS), show that the EDCS H
contains a large matching, and show how to maintain
an EDCS in G. However, the proofs of both these steps
are completely different in bipartite and non-bipartite
graphs. In bipartite graphs, we rely on ideas from flows
and cuts to non-constructively prove the existence of a
good matching in H, but these ideas do not seem to
extend to non-bipartite graphs. In this paper we in-
stead explicitly construct a large fractional matching in
H. In some cases we can guarantee that this fractional
matching is γ-restricted, which combined with our The-
orem 1.4 guarantees a large integral matching. The
proof of Theorem 1.4 relies on a new structural property
of maximum matchings in non-bipartite graphs, which
is analogous to the cut induced by maximum matchings
in bipartite graphs.

Finally, the approach to efficiently maintaining the
edge degree constrained subgraph H is different. Bern-
stein and Stein [2] showed that in bipartite graphs the
EDCS could be maintained after an update to G by fix-
ing all the edges on a specific (short) path. In general
graphs, the existence of blossoms (among other things)
makes the maintenance more difficult. We use an ap-
proach that does not explicitly use augmenting paths
(which would have to deal with blossoms in some way),
instead switching to a simpler, amortized approach.
The resulting analysis is much more general, and shows
that if we simply fix up violating edges in the EDCS in
an arbitrary order, then on average we will terminate
quickly.

2 Preliminaries

Let G = (V,E) be an undirected, unweighted graph
where |V | = n and |E| = m. We will often deal
with graphs other than G, so all of our notation will
be explicit about the graph in question. We define
dG(v) to be the degree of a vertex v in G; if the graph
in question is weighted, then dG(v) is the sum of the
weights of all incident edges. We define edge degree as
δ(u, v) = d(u) + d(v). If H is a subgraph of G, we say
that an edge in G is used if it is also in H, and unused
if it is not in H. Throughout this paper we will only be
dealing with subgraphs H that contain the full vertex
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set of G, so we will use the notion of a subgraph and of
a subset of edges of G interchangeably. Recall the set
difference operator Z1 \ Z2 = {x ∈ Z1|x 6∈ Z2}.

A matching in a graph G is a set of disjoint edges
in G. We let µ(G) denote the size of the maximum
matching in G. A vertex is called matched if it is
incident to one of the edges in the matching, and free
or unmatched otherwise. A fractional matching is an
assignment of values to edges such that the total value
of edges incident to any vertex is at most 1. We let
val(u, v) denote the value of edge (u, v) in a fractional
matching. Given a vertex v, val(v) will denote the
sum of the values of all edges incident to v. We say
a fractional matching is feasible if val(v) ≤ 1 ∀v ∈
V . Given some fractional matching Mf , val(Mf ) will
denote the sum of all edge values in Mf . We let
µf (G) denote the size of the maximum-valued fractional
matching in G. We will often compute the value of a
fractional matching by summing over vertices. To avoid
double counting edges, we let each endpoint of an edge
account for a fraction of that edge. More formally, given
a graph G, we define an accounting of the edges to be
a function that assigns to each edge (x, y) two values
ax(x, y) and ay(x, y) such that ax(x, y) + ay(x, y) ≤ 1.
Given a fractional matching Mf and some accounting
of the edges, we define the profit of x, ρ(x), to be
ρ(x) =

∑

(x,y)∈E ax(x, y)val(x, y).

Observation 1. Given some fractional matching Mf

in G, and some accounting of the edges of G, we
always have val(Mf ) ≤ ∑

x∈V ρ(x). This inequality
holds with equality when, for each edge (x, y), we have
ax(x, y) + ay(x, y) = 1.

We now state a lemma from [2] which is an easy
corollary of a result of [9].

Lemma 2.1. ([9]) If a dynamic graph G has maximum
degree B at all times, then we can maintain a (1 + ǫ)-
approx. matching under insertions and deletions in
worst-case update time O(Bǫ−2) per update.

Orientations An orientation G′ of an undirected
graph G is an assignment of a direction to each edge
in E. Given an orientation of edge (u, v) from u to v,
we will say that u owns edge (u, v) and will define the
load of a vertex u to be the number of edges owned by
u. Orientations of small max load are closely linked
to arboricity: every graph with arboricity α has an
orientation with max load O(α) [16]. Our algorithms
will maintain an orientation of the dynamic graph G
using the algorithms referred to in the theorems below.
The first result is due to Bernstein and Stein [2], the
second to Kopelowitz et al.[12].

Theorem 2.1. [2] In a graph G, we can maintain an
orientation, under insertions and deletions, with the
following properties: the max load at all times is at most
3
√
m, the worst-case number of edge reorientations per

insert/deletion in G is O(1), and the worst-case time
spent per insertion/deletion in G is O(1).

Theorem 2.2. ([12]) Let G be a graph that always has
arboricity at most α. We maintain an orientation,
under edge insertions and deletions, with the following
properties: the maximum load at all times is O(α +
log n), the worst-case number of edge reorientations
per insertion/deletion is also O((α + logn)), and the
worst-case time to process an insertion/deletion in G is
O(α(α+ log n)).

3 The Framework

Definition 2. An unweighted edge degree constrained
subgraph, denoted EDCS(G, β, β−) is a subset of the
edges H ⊆ E (we will also refer to it as a subgraph)
with the following properties:

(P1) if (u, v) is used (i.e. (u, v) ∈ H) then dH(u) +
dH(v) ≤ β ,

(P2) if (u, v) is unused (i.e. (u, v) ∈ G \ H) then
dH(u) + dH(v) ≥ β−.

We also define a similar subgraph where edges inH have
positive integer weights, effectively allowing them to be
used more than once. Note that dH(v) now refers to the
sum of the weights of v’s incident edges.

Definition 3. A weighted edge degree constrained sub-
graph(EDCS) (G, β, β−) is a subset of the edges H ⊆ E
with positive integer weights that has the following prop-
erties:

(P1) if (u, v) is used then dH(u) + dH(v) ≤ β,

(P2) for all edges (u, v), we have dH(u) + dH(v) ≥ β−.

Below is an outline of how our algorithm processes an
edge insertion/deletion in G:

1. Update the small-max-load edge orientation using
either Theorem 2.1 or Theorem 2.2 .

2. Update the subgraph H so it remains a valid edge
degree constrained subgraph of the changed graph
G. This step uses the orientation from step 1 for
efficiency. (See Section 6.)

3. Update the (1 + ǫ)-approx. matching in H with
respect to the changes in H from step 2. (Lemma
2.1.)
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The maintained (1+ ǫ)-approx matching of H (step
3) is also our final matching in G; much of the paper is
devoted to showing that because H is an EDCS, µ(H)
is not too far from µ(G).

Because much of our algorithm runs on a dynamic
subgraph of G we need the following definition: Let H
be a subgraph of a dynamic graph G, and let A be an
algorithm that modifies the edges of H as G changes;
then, we say that A has an amortized update ratio of
r if for any large enough sequence S of edge changes
(insertions or deletions) to G, the algorithm makes at
most r|S| edge changes to H.

We can now state the main theorems of the paper.
We present general and small arboricity graphs sepa-
rately, but the basic framework described above remains
the same in both cases. In all the theorems below, the
parameter ǫ > 0 is chosen to obtain a desired approxi-
mation ratio (either (1 + ǫ) or (3/2 + ǫ)).

3.1 General Graphs For the sake of intuition, in the
two theorems below, think of β as quite large (roughly
m1/4). Also recall that µ(H) denotes the size of the
maximum matching in H.

Theorem 3.1. Let G be a graph and let λ = ǫ/6. Let
H be an unweighted EDCS of G with β− = β(1 − λ),
where β ≥ 32λ−3 is a parameter we will choose later.
Then µ(H) ≥ (2/3− 2ǫ)µ(G).

Theorem 3.2. Let G be a graph. Let H be an un-
weighted EDCS of G with β− = β(1 − λ), with β ≥
36λ−1. There is an algorithm that maintains H over
updates in G (i.e. maintains H as a valid EDCS) with
the following properties:

• The algorithm has amortized update time O
(√

m
λ2β

)

.

• The amortized update ratio of the algorithm is
O(1/λ).

Proof of Theorem 1.1 We use the algorithm outline
presented at the beginning of Section 3. We set H to
be an unweighted EDCS(G, β, β(1 − λ)) with λ = ǫ/6
and β = m1/4ǫ1/2. By Theorem 3.2 we can maintain

H in amortized update time O(
√
m

λ2β ) = O(m1/4ǫ−2.5).

The update-ratio is O(λ−1) = O(ǫ−1). Since degrees
in H are clearly bounded by β, by Lemma 2.1 we can
maintain a (1 + ǫ)-approx. matching in H in time
O(βǫ−2); multiplying by the update ratio of maintaining
H in G, we need O(βǫ−3) = O(m1/4ǫ−2.5) time to
maintain the matching per change in G. By Theorem
3.1, µ(H) is a (3/2+2ǫ)-approximation to µ(G), so our
matching is a (3/2 + 2ǫ)(1 + ǫ) = (3/2 + O(ǫ))-approx.
matching in G. ✷

3.2 Small Arboricity Graphs For the sake of in-
tuition, in the two theorems below think of β as quite
small, roughly O(ǫ−2).

Theorem 3.3. Let G be a graph, and let β ≥ 25ǫ−2.
Let H be a weighted EDCS with β− = β(1 − λ), where
λ = ǫ2/25. Consider the fractional matching MH

f

in H, with val(u, v) = 1/max{dH(u), dH(v)}. Then
MH

f is a feasible fractional matching, and val(MH
f ) ≥

µf (G)(1− ǫ).

Theorem 3.4. Let G be a dynamic graph that at all
times has arboricity ≤ α. Let H be a weighted
EDCS(G, β, β(1 − λ)) with β ≥ 4λ−1. There is an al-
gorithm that maintains H over updates in G with the
following properties:

• The algorithm has amortized update time O(α(α+
log n+ βλ−1)).

• The amortized update ratio of the algorithm is
O(βλ−1).

If H is instead an unweighted EDCS(G, β, β(1 − λ)),
the algorithm has amortized update time O(α(α+log n+
λ−1)) and amortized update ratio O(λ−1).

Proof of Theorem 1.2 The proof is essentially iden-
tical to that Theorem 1.1; for the transition subgraph
H, we use an (unweighted) EDCS(G, β, β(1 − λ)) with
β = 100ǫ−2 and λ = ǫ2/25 (so β(1− λ) = β − 4). ✷

Proof of Theorem 1.3 Let H be a weighted
EDCS(G, β, β(1 − λ)) with β = 100ǫ−2 and λ = ǫ2/25.
By Theorem 3.4 we can maintain H in amortized up-
date time O(α(α+ log n+ ǫ−4)) and amortized update
ratio O(ǫ−4).

We now need to maintain a fractional matching in
H. We cannot rely on Lemma 2.1 as in the previous
proofs, because this lemma only applies to maintaining
an integer matching. Instead, we explicitly maintain
the fractional matching MH

f defined in Theorem 3.3.
By definition of update ratio, every update in G only
changes an average of O(ǫ−4) edges inH, so only O(ǫ−4)
vertices v have their degree dH(v) changed. For each
such vertex v, we spend O(β) = O(ǫ−2) time going
through its incident edges inH and updating their value
to the new 1/max{dH(u), dH(v)}. This yields a total
update time of O(ǫ−6) for maintaining MH

f in H. By

Theorem 3.3, MH
f is the desired (1 + ǫ) approximation

to µf (G). ✷

Overview of the paper As mentioned in the in-
troduction many of the theorems in this framework di-
rectly correspond to theorems in Bernstein and Stein’s
paper on bipartite graphs [2], but the proofs are com-
pletely different. Theorem 3.3 is proved in Section 5 and
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is analogous to Theorem 7 in [2]; in bipartite graphs,
no distinction between integer and fractional matchings
was needed. Theorem 3.1 is discussed in the second half
of Section 5 and is analogous to Theorem 5 in [2]. Fi-
nally, Theorems 3.2 and 3.4 are discussed in Section 6
and are analogous to Theorems 6 and 8 in [2].

4 A γ-restricted Fractional Matching
Contains a Large Integral Matching

To prove Theorem 1.4, we first prove a structural
theorem about matchings in non-bipartite graphs. In
bipartite graphs, because of the relationship between
matching and flows, a maximum matching induces a
cut in the graph. The following is an attempt to exhibit
an analogous property for non-bipartite graphs.

Lemma 4.1. Let M be a maximum matching in a graph
G. We can partition the vertices of G into three sets,
C (connected) , L (lonely) and B (both) such that the
following properties hold:

1. All free vertices are in L.

2. Each vertex in C is matched to a vertex in L.

3. There are no edges in L× L.

4. Each vertex in B has at most one neighboring
vertex in L.

Proof. Given a graph G with maximum matching M ,
we define a free-free path to be a (non-empty) simple
alternating path that starts and ends with edges not in
M . We define a free-matched path to be a (non-empty)
simple alternating path that starts with an edge not in
M and ends with an edge in M . Note that a free-free
path need not start or end with a free vertex. We now
define two vertex sets fer (free-edge-reachable) and
mer (matched-edge-reachable). We say that a vertex v
is in mer if there is a free-matched path from some free
vertex w to v. Similarly, we say that a vertex v is in fer
if there is a free-free path from some free vertex w to v.
Note that fer and mer are not necessarily disjoint, and
there may be vertices that are in neither set. We also
let F denote the set of free vertices. F is disjoint from
mer by definition. Observe that F is also disjoint from
fer because M is a maximum matching and so contains
no augmenting paths; suppose, for contradiction, that
v ∈ F ∩fer: then the free vertex v is reachable by some
free-free path from a free vertex w, which is precisely an
augmenting path from w to v.

It is not hard to check that in bipartite graphs
fer and mer are disjoint, because if a vertex v was
in both sets then there would be an augmenting path
in the matching. Thus, in a bipartite graph we would

achieve the desired partition by setting C = fer, L =
mer∪F,B = V −C−L. It is not hard to check that this
partition satisfies all four properties of Lemma 4.1, and
that in fact it achieves a stronger version of property
4, where there are no edges from B to L. In a non-
bipartite graph however, there could be vertices which
are in both fer and mer, which roughly correspond
to vertices in blossoms. For this reason we need a more
involved definition of the set B which ends up indirectly
capturing all the blossom vertices.

For nonbipartite graphs, we define the connected set
C = fer \ mer and lonely set L = (mer \ fer) ∪ F .
We then define B = V \ (C ∪L). Informally, B contains
non-free vertices that either are in both mer and fer
or are not reachable by any alternating path from a free
vertex.

We now proceed to verify the conditions of the
theorem. The first condition is immediate from the
definition of L. The second condition says that each
vertex in C is matched to a vertex in L. To prove this,
we note that each vertex v in C is also in fer, so it
is reachable by a free-free path Pv from a free vertex
w. We also know that v is matched since fer is disjoint
from F , so let x be the vertex to which v is matched. We
want to show that x ∈ mer\fer. Note that the free-free
path Pv cannot contain x as then it would end on the
matched edge (x, v) The path Pv followed by edge (v, x)
is thus a simple free-matched alternating path from w
to x and so x ∈ mer. Now assume, fpoc, that also
x ∈ fer. Then there is a free-free path Px from a
free vertex w′ (which could be the same as w). But
then Px followed by (x, v) is a free-matched path from
w′ to v and therefore v ∈ mer, which contradicts the
assumption that v ∈ C. (Note that Px cannot already
contain v earlier in the path, for if it did it would also
contain x as an interior vertex, which contradicts Px

being simple).
To prove the third condition, assume fpoc that there

is an edge (x, y) ∈ L × L. There are three cases to
consider, depending on whether x and y are free. If
both x and y are free, then there is an augmenting
path from (x, y), contradicting M being a maximum
matching. Now consider the case where one vertex, say
x, is free, and y ∈ mer \ fer. Then the edge (x, y) is
a free-free path, so y ∈ fer, a contradiction. The last
case to consider is where both x and y are in mer\fer,
yet the edge (x, y) exists. By definition, there is some
free-matched path Px from a free vertex w to x. Now,
if y /∈ Px then the path Px followed by edge (x, y)
is a simple free-free path from w to y, so y ∈ fer –
contradiction. If y ∈ Px then let Py be the subpath of
Px from w to y. Since y /∈ fer, Py ends on a matched
edge; thus the path Py followed by edge (y, x) is a free-
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free path from w to x, so x ∈ fer, a contradiction.
The fourth condition states that each vertex in B is

incident to at most one vertex in L. Consider a vertex
v ∈ B. There are two cases to consider: v ∈ fer ∩mer
and v ∈ V − fer − mer. In the latter case, there
clearly cannot be an edge (v, x) to some x ∈ L, since if
x is free then the existence of edge (x, v) would imply
that v ∈ fer, contradicting our assumption; similarly,
if x ∈ mer, then there is some free-matched path Px

from a free vertex to x, and so considering the path Px

followed by edge (x, v), we would have that v ∈ fer.
We now consider the case where v ∈ fer ∩ mer. Since
v ∈ mer, it is the end of some free-matched path Pv

starting at a free vertex w, and is possibly the end of
many such paths. Fix one such path Pv, let w be the
free vertex at the start of the path, and define the apex
apex(P ) to be, among all vertices in Pv ∩ L, the one
closest to v on P . We now show that the only possible
edge from v to a vertex x ∈ L is the edge (v,apex(P )).
We will establish this fact by ruling out all other possible
edges. To this end, there are three cases to consider:
x 6∈ P , x ∈ P and is between between apex(P ) and
v, and x ∈ P and between w and apex(P ). In the
first case, the path P followed by edge (v, x) is simple
and hence free-free, and so x ∈ fer and not in L. The
second case cannot occur by the definition of apex, for x
would be the apex(P ) in this case. In the third case, we
claim that if there is such an edge, then apex(P ) ∈ fer,
contradicting the fact that apex(P ) ∈ L. We show this
by observing that there is a free-free path consisting
of the portion of P from w to x, followed by the edge
(x, v), and then followed by the portion of P from v to
apex(P ). So we have ruled out all possible edges from
v to L except the edge (v,apex(P )).

It might seem strange that we picked one specific
free-matched path Pv and proved that the only possible
edge from v to L is to the apex of that path, since in
fact, there can be many free-matched paths to v. But
the proof actually shows that for any free-matched path
P from a free vertex to v, the only possible edge from
v to L is (v,apex(P )); thus, if there are two different
free-matched paths to v with different apexes then we
have shown that there are in fact no edges from v to L.

Proof of Theorem 1.4 Let Mf be our γ-restricted
fractional matching in G, let G∗ be the support of Mf

and let M∗ be the maximum integer matching in G∗.
We want to show that val(Mf ) ≤ |M∗|(1 + γ).

We can assume by induction on the size of Mf that
all edges in Mf have value ≤ γ; if some edge (x, y) had
value 1, then G∗ contains no other edges incident to x
or y, so by the induction hypothesis we could find an
integral matching of size at least (val(Mf )− 1)/(1+γ)

in G∗ − {x} − {y}. We could then add edge (x, y) to
this integral matching, yielding the desired matching of
size ≥ (val(Mf )− 1)/(1 + γ) + 1 > val(Mf )/(1 + γ).

We can partition the vertices into sets C, L, and B,
that satisfy Lemma 4.1 with respect to the graph G∗

and the matching M∗. To bound val(Mf ), we consider
the following accounting of the edges in G∗. For an
edge (x, y) ∈ C × C, let ax(x, y) = ay(x, y) = 1/2.
For an edge (x, y) ∈ C × V \ C, let ax(x, y) = 1
and ay(x, y) = 0. For an edge (x, y) ∈ B × B, let
ax(x, y) = ay(x, y) = 1/2, For an edge (x, y) ∈ B × L,
let ax(x, y) = 1 and ay(x, y) = 0. Note that by property
3 of Lemma 4.1, G∗ contains no edges in L× L.

Note that for all edges (x, y) we have ax(x, y) +
ay(x, y) = 1. Thus, combining Observation 1 with
the fact that vertices in L receive no profit under this
accounting:

val(Mf ) =
∑

x∈V

ρ(x) =
∑

x∈C

ρ(x) +
∑

x∈B

ρ(x) .

To upper bound the total profit of C, we simply observe
that since Mf is a fractional matching, for any vertex
x, val(x) ≤ 1 and ρ(x) ≤ 1, so

∑

x∈C ρ(x) ≤ |C|.
To upper bound the total profit from B, consider an
x ∈ B, and let valL(x) be the total value of all edges
from x to L. Then the total value of all edges from x to
V \ L is at most 1− valL(x), and since our accounting
only lets x account for at most half of each edge to
V \L, we have that ρ(x) ≤ valL(x)+(1−valL(x))/2 =
(valL(x)+1)/2. But by property 4 of Lemma 4.1 there
is at most one edge from x to L, and since Mf is by
assumption a γ-restricted fractional matching, we have
that valL(x) ≤ γ, so ρ(x) ≤ (1 + γ)/2. We thus have

val(Mf ) =
∑

x∈C

ρ(x) +
∑

x∈B

ρ(x)

≤ |C|+ |B|(1 + γ)/2

≤ (1 + γ)(|C|+ |B|/2) .

(4.1)

There are 2M∗ matched vertices in total; by property 1
of Lemma 4.1 all vertices in C and B are matched, and
by property 2 there are at least |C| matched vertices
in L, so 2|C| + |B| ≤ 2|M∗|, so |C| + |B|/2 ≤ |M∗|.
By Equation 4.1 above this implies that val(Mf ) ≤
(1 + γ)|M∗|, as desired. ✷

5 An EDCS Contains a Large Matching

A Weighted EDCS Contains a Large Frac-

tional Matching We now sketch the proof of Theo-
rem 3.3. The proof is conceptually quite simple, but
somewhat technical because of the λ slackness in prop-
erty P2 of a weighted EDCS. Thus, we start by giv-
ing a proof that assumes a tighter version of property
P2, which we call P2′: that for any edge (u, v) in G,
dH(u) + dH(v) ≥ β. We leave the full proof without
this assumption for Section A of the appendix.
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Proof Sketch of Theorem 3.3 We will start by
defining a simple accounting on the edges of H. If
dH(v) > β/2 we set av(v, w) = 1 for all edges (v, w).
If dH(v) < β/2 we set av(v, w) = 0 for all edges (v, w).
If dH(v) = β/2 we set av(v, w) = 1/2 for all edges (v, w).
Property P1 of an EDCS clearly ensures that this is a
valid accounting in that av(v, w)+ aw(v, w) ≤ 1 for any
edge (v, w) in H.

Recall that for every edge (u, v) ∈ H, MH
f assigns

val(u, v) = 1/max{dH(u), dH(v)}. Given the account-
ing above, there is a simple formula for the profit of
vertex v. If dH(v) > β/2 then, by property P1 of an
EDCS, for every edge (v, w) we have dH(w) < dH(v), so
val(v, w) = 1/max{dH(u), dH(v)} = 1/dH(v). Since v
has dH(v) incident edges and full accounting of all of
them, we have ρ(v) = 1. Similarly if dH(v) = β/2 then
ρ(v) = 1/2, since v now only accounts for half of each
incident edge. Finally, if dH(v) < β/2, then v does not
account for its edges, so clearly ρ(v) = 0.

Now, it is well-known [20] that there must exist a
maximum fractional matching in which all edge values
are 0, 1/2 or 1. From this fact, we can easily show
G must contain some maximum fractional matching
that consists of disjoint odd cycles and disjoint isolated
edges; the isolated edges all have value 1, the edges on
cycles have value 1/2, and all other edges have value
0. To verify this statement, observe first that all the 1
edges must be isolated in any matching. If we remove
the 1 edges from the matching, the remaining edges with
value 1/2 must form a set of disjoint cycles (that are
also disjoint from the set of removed 1 edges). Any
even cycle can be replaced with a cycle that alternates
between edges of value 0 and edges of value 1, leaving
only odd cycles for the 1/2-edges. Let MG

f be such a

maximum fractional matching in G. MG
f gets a value

of 1 from each isolated edge, and a value of d/2 for each
odd cycle of length d; we will show that MH

f receives
exactly the same amount from each edge / odd cycle.

For each isolated edge (v, w) in MG
f we have by

property P2′ that dH(v) + dH(w) ≥ β, so either one of
dH(v) or dH(w) is larger than β/2, or both are equal to
β/2; either way, ρ(v)+ ρ(w) ≥ 1, so MH

f gets a value of
1 from the edge, as desired. For a cycle of odd length d,
let v be the vertex on the cycle with maximum dH(v).
It is not hard to see that dH(v) ≥ β/2, since otherwise,
by property P2′, the neighbors of v on the cycle would
have degree higher than dH(v). Thus, we have that
ρ(v) ≥ 1/2. The remainder of the cycle clearly contains
(d−1)/2 disjoint edges inG, and by the argument above,
for each of these edges MH

f gains a profit of at least 1.

Thus, the total profit of MH
f from the cycle is at least

1/2 + (d− 1)/2 = d/2. ✷

Lemma 5.1. Let H be a edge degree constrained
subgraph(G, β, β(1 − λ)) with λ = ǫ/6 and β ≥ 32λ−3.
Then H contains an ǫ-restricted fractional matching
MH

f with total value at least µ(G)(2/3− ǫ).

Proof. (sketch) As in the proof of Theorem 3.3 in Sec-
tion 5,we explicitly construct a fractional matching; in
this case, a ǫ-restricted one. Unfortunately, this is by
far the most complex proof in our paper, and it relies
on the probabilistic method; if we can construct a ǫ-
restricted matching that has size k in in expectation,
then a ǫ-restricted matching of size k is guaranteed to
exist. Note that our overall algorithm is still determin-
istic because we only use randomization in the analysis.
We suspect that there exists a more natural construc-
tion of a large ǫ-restricted matching, but have so far
been unable to find it. For this reason, we leave the full
proof of Lemma 5.1 for Section B of the appendix. Here
we give a sketch of the proof.

Let MG be some maximum matching in G. Let MG
H

be the edges of MG in H, and let MG
G\H be the edges of

MG in G \H, so |MG
H |+ |MG

G\H | = |MG| = µ(G). Let

the vertex sets SG, SG
H , and SG

G\H contain the endpoints

of the edges of MG, MG
H , and MG

G\H respectively.

Let us consider the properties of SG
H and SG

G\H .

Firstly, SG
H contains a perfect matching using edges in

H; namely, the edges of MG
H . Secondly, |SG

H |+ |SG
G\H | =

2(|MG
H | + |MG

G\H |) = 2µ(G). Thirdly, for every edge

(u, v) ∈ SG
G\H we have by property P2 of an EDCS that

dH(u) + dH(v) ≥ β(1 − ǫ). Thus, the average degree
dH(v) of vertices in SG

G\H is at least β(1−ǫ)/2. For this
proof sketch, let us make a big simplifying assumption:
all vertices in SG

G\H have degree exactly β/2. Note that

dropping the (1 − ǫ) factor is a minor assumption we
could easily do without, but setting all degrees to be
the same makes the proof qualitatively simpler, and
allows us to avoid recourse to the probabilistic method.
Finally, as we show in the full proof, if we pick our
maximum matching MG carefully we can preserve the
properties above while also ensuring the fourth property
below. (This is a simplified version of Lemma B.2 in the
full proof of Lemma 5.1).

1. SG
H contains a perfect matching using edges in H

2. |SG
H |+ |SG

G\H | = 2µ(G)

3. Every vertex v ∈ SG
G\H has dH(v) = β/2 (big

simplifying assumption)

4. All edges incident to SG
G\H go to SG

H

Now consider the ǫ-restricted fractional matching
MH

f in H in which all edges in H from SG
G\H to SG

H are
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given value 2/β; (this is ǫ-restricted because β is large,
so 2/β << ǫ). Let us first verify that no vertex has total
value more than 1. Every vertex v ∈ SG

G\H has degree

exactly β/2 in H (property 3 above), so it has total
value (β/2)(2/β) = 1. Now consider a vertex v ∈ SG

H .
If there exists no edge (v, w) ∈ H with w ∈ SG

G\H then v
has total value 0 and we done. Otherwise, by property
3 above we have dH(w) = β/2, so by property P1 of
an EDCS we have dH(v) ≤ β/2, so v has total value at
most (β/2)(2/β) = 1.

Let us now consider the total value of MH
f . Since

each vertex in SG
G\H has degree β/2 (property 3) and all

edges from SG
G\H go SG

H (property 4), we have a total of
β
2 |SG

G\H | edges in SG
G\H × SG

H , and each has value 2/β,

so val(MH
f ) = |SG

G\H |.
There are now two cases to consider. The first is

that |SG
G\H | ≥ |SG

H |/2. By property 2 above we then
have

val(MH
f ) = |SG

G\H | = 1

3
|SG

G\H |+ 2

3
|SG

G\H |

≥ 1

3
(SG

G\H + SG
H) =

2

3
µ(G)

so we have sucesfully constructed the large ǫ-restricted
matching needed by Lemma 5.1.

The second case is that |SG
G\H | < |SG

H |/2. In this we
choose a different ǫ-restricted matching which is simply
the integral matching that assigns weight 1 to all the
edges in the perfect matching of SG

H (property 1 above).
This matching has size |SG

H |/2 and by property 2 above
we have:

1

2
|SG

H | = 1

6
|SG

H |+ 1

3
|SG

H | > 1

3
(SG

G\H + SG
H) =

2

3
µ(G) .

Note that in the full proof of Lemma 5.1 we end up
mixing the two cases; that is, we end up taking some
edges directly from the perfect matching in SG

H (with
weight 1), and some from SG

G\H×SG
H (with small weight

< ǫ).

Proof of Theorem 3.1 By Lemma 5.1, H contains an
ǫ-restricted fractional matching MH

f with total value at

least µ(G)(2/3−ǫ). By Theorem 1.4, MH
f must contain

an (integral) matching M of size at least µ(G)(2/3 −
ǫ)
(

1
1+ǫ

)

> µ(G)(2/3− 2ǫ), as desired.
✷

6 Maintaining an edge degree constrained

subgraph

Due to space constraints, in this section we only flesh
out the algorithm for maintaining H in small arboricity
graphs (Theorem 3.4), leaving the proof of Theorem

3.2 for Section D of the appendix. The first half of
the latter proof is nearly identical to the proof in this
section, but the parameters are less intuitive so for the
sake of clarity we separate the two proofs. Let H be
an EDCS(G, β, β(1 − λ)), and say that at all times
the graph G has arboricity ≤ α. Recall that by the
statement of Theorem 3.4 we have β ≥ 4λ−1.

As the graph G changes, we need an algorithm that
changes the graph H in a way that preserves the EDCS
properties. An adversary will make external insertions
and deletions in G, but these differ in a crucial way.
If the adversary deletes an edge (u, v) ∈ G, and (u, v)
was also in H, then we must necessarily delete (u, v)
from H. However, if the adversary inserts an edge
(u, v) ∈ G, we do not immediately change H. In
either case, after the external operation, conditions P1
or P2 may be violated for (u, v) or for other edges
(in particular those incident to vertex u or v). The
basic idea of our algorithm is very simple: whenever the
algorithm detects an edge that violates one of the EDCS
properties, it fixes it through an insertion/deletion, and
we call these operations internal : if the edge violates
property P1 it removes the edge from H, and if the
edge violates property P2 it adds the edge to H. If
multiple edges violate the EDCS properties they can
be fixed in any order. However, fixing one violation
may cause violations to other edges, and the process
of performing internal operations cascades. We will
analyze our algorithm with a potential function which
shows that on average, each update to G only leads to
a small number of internal updates to H.

Definition 4. We say that algorithm A for maintain-
ing H is locally repairing if:

1. Algorithm A only internally deletes edge (u, v) from
H if before the deletion dH(u) + dH(v) > β (i.e.,
the edge violated property P1).

2. Algorithm A only inserts edge (u, v) into H if before
the insertion dH(u) + dH(v) < β(1 − λ) (i.e., the
edge violated property P2).

If the algorithm is locally repairing, then after an
internal insertion/deletion of edge (u, v), (u, v) does not
violate the EDCS properties. If edge (u, v) originally
violated property P1, then before the update dH(u) +
dH(v) > β; removing (u, v) only decreases the edge
degree by 2, so after the update dH(u)+dH(v) > β−2 >
β(1 − λ) (because β ≥ 4λ−1), and so (u, v) satisfies
property P2. Similarly, if edge (u, v) violated property
P2 then after the update dH(u)+dH(v) < β(1−λ)+2 <
β, so (u, v) satisfies property P1.
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Lemma 6.1. If an algorithm A for maintaining H is
locally repairing, then A performs an amortized O(1/λ)
internal updates to H for each update to G.

Proof. Consider the potential function

Φ =
∑

(u,v)∈H

(dH(u) + dH(v))− β(1− λ/2)
∑

v∈V

dH(v) .

We will show that an internal insertion or deletion to
H decreases Φ by at least βλ/2, while an external
deletion to G increases Φ by at most 2β, and an
external insertion leaves Φ unchanged; together these
facts clearly imply the lemma. Given any update to edge
(x, y), we let do(x), do(y), dn(x), dn(y) (O for old, N
for new) denote the degrees of x and y before and after
the edge update. Let ∆Φ denote the change to Φ due
to the update.

Consider first an internal insertion of edge (x, y).
dH(x) and dH(y) each increase by 1, and thus
∑

v∈V dH(v) increases by 2. To bound the total change
to

∑

(u,v)∈H(dH(u) + dH(v)), observe that the degree
of each of the edges incident to x and y increases by 1
so the total increase in edge degree of all these edges is
precisely do(x) + do(y). We also added a new edge of
edge degree dn(x) + dn(y) = do(x) + do(y) + 2; thus
∆Φ = 2(do(x) + do(y)) + 2 − 2β(1 − λ/2). But be-
cause our algorithm is locally repairing we know that
for an internal insertion do(x) + do(y) < β(1 − λ), so
∆Φ < 2β(1−λ)+2−2β(1−λ/2) = −βλ+2 ≤ −βλ/2,
as desired. (The last inequality follows from β ≥ 4λ−1).

Consider next an internal deletion of edge (x, y).
The total change to

∑

v∈V dH(v) is now −2. The
deletion causes the degree of each edge incident to x
and y to go down by one, so the total change to all
these edge degrees is do(x) + do(y). We also deleted
an edge of edge degree do(x) + do(y). Thus, ∆Φ =
−2(do(x) + do(y)) + 2β(1− λ/2). Since our algorithm
is locally repairing we know that for an internal deletion
do(x) + do(y) > β, so ∆Φ ≤ −βλ, as desired.

Consider next an external deletion of edge (x, y).
The same argument as for internal deletions yields
∆Φ = −2(do(x)+ do(y))+ 2β(1−λ/2). Now however,
we have no lower bound on do(x)+do(y) except that it
is clearly positive. This yields ∆Φ ≤ 2β(1− λ/2) < 2β,
as desired.

Finally, external insertions do not change H and
hence do not alter Φ.

We now present a locally-repairing algorithm for
maintaining H. Note that we maintain a dynamic
orientation in G using Theorem 2.2, so in addition to
being able to process updates to G, the algorithm also
has to be able to process edge reorientations in G.

Lemma 6.2. There exists a locally repairing algorithm
A for maintaining H such that the update time of A
per update to G is O(α(1+ number of internal updates
performed by A)), and the update time of A per edge
reorientation in G is O(1).

We say that an edge is violating if it violates one of
constraints P1 or P2 of an EDCS. Before proving this
lemma, we design and analyze a data structure for
detecting a violating edge incident to a given vertex.

Lemma 6.3. Let G be a graph on which we maintain a
dynamic orientation in which each vertex owns O(α)
edges. There exists a data structure vo (violation
oracle) that supports the following operations:

• vo.find(v) returns, in O(α) time, some violating
edge (v, w) incident to v, or nil if none exists.

• vo.change-status(v,w) updates the data structure in
O(α) time when edge (v, w) is added/removed from
H, or inserted/deleted from G.

• vo.reorient(v,w) updates the data structure in O(1)
time when edge (x, y) is reoriented.

Proof. Here we give a proof that incurs an extra
O(log n) factor on each operation. We show in Sec-
tion C how to remove this factor. For each vertex v we
keep track of dH(v) and we maintain two balanced bi-
nary search trees. NH

v contains the degrees dH(w) of all
vertices w for which (v, w) ∈ H and (v, w) is not owned

by v. N
G\H
v contains the degrees dH(w) of all vertices

w for which (v, w) ∈ G \H and is not owned by v.
To implement vo.find(v), we first spend O(α) time

scanning the owned edges of dH(v) for a violating edge.
If none is found, we need to look for a violating edge
(v, w) that is not owned by v. Note that if (v, w)
violates constraint P1 of an EDCS then (v, w) ∈ H
and dH(v) + dH(w) > β; thus, we can find such an
edge in O(log n) time by checking if NH

v contains any
vertices w with dH(w) > β − dH(v). Similarly, we can
find an edge (v, w) ∈ G \ H that violates property

P2 of an EDCS by searching in N
G\H
v for elements

dH(w) < β(1− λ)− dH(v).
To implement vo.change-status(v, w) when the

edge (v, w) changes we might have to insert or re-
move edge (v, w) from the various data structures

NH
v , N

G\H
v , NH

w , N
G\H
w ; this can clearly be done in

O(log n) time. Also, dH(v) and dH(w) might have
changed by 1. If dH(v) changes, for every edge (v, x)

that is owned by v we have to update NH
x or N

G\H
x de-

pending on whether (v, x) is in G or G \H. But v only
owns O(α) edges, so this requires O(α log n) time. We
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Update (x, y) in G
stack.push(x); stack.push(y)
While !stack.Empty()

• v = stack.pop()
• fixup(v)

Fixup (v)
(v, w) = vo.find(v)
if (v, w) 6= NIL

• if (v, w) ∈ H, remove (v, w) from H \\ P1 violated
• if (v, w) 6∈ H, add (v, w) to H \\ P2 violated
• vo.change-status(v, w)
• stack.push(v); stack.push(w)

Figure 1: How the algorithm of Lemma 6.2 handles an
update to G

can similarly handle the change to dH(w) in O(α log n)
time.

Finally, to implement vo.reorient(v, w), if (v, w)
was previously owned by v we have to move dH(v) out

of NH
w or N

G\H
w and move dH(w) into NH

v or N
G\H
v .

This requires O(log n) time. We can save an O(log n)
factor in this proof by replacing the binary search tree
with a simple array-based structure (Section C).

Proof of Lemma 6.2 Note that all we are looking
for is a procedure for quickly detecting and fixing a
violating edge; Lemma 6.1 already guarantees that any
such procedure will terminate quickly.

The algorithm at all times maintains the violation
oracle vo of Lemma 6.3. To handle a reorientation of
edge (x, y) the algorithm simply calls vo.reorient(x,y),
which takes O(1) time. The procedure for handling an
update to G is defined in Figure 1. We maintain a stack
(stack) which will contain vertices that might possibly
have an incident violating edge. The key observation is
that an edge (x, y) can only become violating if one of
dH(x) or dH(y) changes, so we will catch all violating
edges if every time we add/remove some edge (x, y)
to/from H we put x and y onto stack. The while loops
guarantees that when we terminate no violating edges
are left.

We now need to show that the algorithm spends
O(α) time per internal update. Each iteration of
the while loop requires O(α) time to run vo.find and
vo.change-status. Other than the two initial vertices
v,w put on stack by the update of edge (v, w) in G,
a vertex x is only put on stack when the algorithm
performs an internal update to edge (x, y), so the time
to process x and y can be charged to the internal update
of (x, y). The algorithm thus requires O(α) time for the
initial update to G, and O(α) time for each subsequent
internal update. ✷

Proof of Theorem 3.4 Maintaining an (unweighted)
EDCS: By Theorem 2.2 each update to G leads to O(α+
log n) edge reorientations, and requires O(α(α+ log n))
time to compute the correct reorientations. by Lemma
6.1 each update to G leads to amortized O(λ−1) internal
updates, yielding the O(λ−1) bound for amortized
update ratio. Thus, by Lemma 6.2, an update to G
can be processed in time O(α(α+ log n+ λ−1)).

To maintain a weighted EDCS, let Gβ be the graph
G where every edge has multiplicity β; maintaining a
weighted EDCS on G is equivalent to maintaining an
unweighted one on Gβ . Each update to G can cause up
to β updates to Gβ , multiplying the update time and
amortized update ratio by β. However, it is not hard
to show that the terms corresponding to maintaining an
orientation are not multiplied by β, since an orientation
of the original graph G suffices. Thus the total update
time is O(α(α+ log n+ βλ−1)). ✷

7 Conclusions

We have presented the first fully dynamic matching
algorithm in general graphs to achieve a o(m1/2) update
time while maintaining a better-than-2-approximate
matching. It is also the fastest known deterministic
algorithm for achieving any constant approximation,
and certainly any better-than-2 approximation. The
two main open questions are whether we can achieve
a (1 + ǫ) approximation in update time O(m1/2−ζ) for
some fixed ζ > 0, and whether we can achieve some
better-than-2 approximation (even say 1.99) in polylog
update time. These results would be interesting even if
randomized, and/or limited to bipartite graphs.
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Appendices

A Full proof of Theorem 3.3

We start by defining the following accounting for the
edges of H. For any vertex v, if dH(v) ≤ β

2 (1 −
√
λ)

we set av(v, w) = 0 for all edges (v, w). If dH(v) ≥
β
2 (1+

√
λ), we set av(v, w) = 1 for all edges (v, w). Else,

if dH(v) ∈ (β2 (1−
√
λ), β

2 (1+
√
λ)) for all edges (v, w) we

set av(v, w) = 1/2+ dH(v)−β/2

β
√
λ

. (It is easy to check that

this is always between 0 and 1). To check that for any
edge in H we always have av(v, w) + aw(v, w) ≤ 1, let
(v, w) be some edge in H, WLOG let dH(v) ≥ dH(w),
and recall that by property P1 of an EDCS we have
dH(v) + dH(w) ≤ β. If dH(w) ≤ (β/2)(1 −

√
λ) then

aw(v, w) = 0, so since av(v, w) ≤ 1, we are done. If
dH(v) ≥ (β/2)(1 +

√
λ) then dH(w) ≤ (β/2)(1 −

√
λ),

so again we are done. Finally, if both dH(v) and dH(w)
are in the interval [(β/2)(1−

√
λ), (β/2)(1+

√
λ)], then

av(v, w) + aw(v, w)

= (1/2 +
dH(v)− β/2

β
√
λ

) + (1/2 +
dH(w)− β/2

β
√
λ

)

= 1 +
dH(v) + dH(w)− β

β
√
λ

≤ 1

where the last inequality follows from dH(v)+dH(w) ≤
β.

Recall that for every edge (u, v) ∈ H, MH
f assigns

val(u, v) = 1/max {dH(u), dH(v)}. Note that given
a vertex v, for every edge (v, w) we have dH(w) ≤
β − dH(v) (property P1 of an EDCS), so val(v, w) ≥
1/max{dH(v), β − dH(v)}. Thus, we have

ρ(v) =
∑

(v,w)

val(v, w)av(v, w)

≥ dH(v)

max{dH(v), β − dH(v)} ·min{1, 1/2 + dH(v)− β/2

β
√
λ

}

(A.1)

Lemma A.1. The function ρ(v) satisfies the following
properties:
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1. If dH(v) ≥ (β/2)(1−λ) then ρ(v) ≥ (1/2)(1−3
√
λ).

2. If dH(v) + dH(w) ≥ β(1 − λ) then ρ(v) + ρ(w) ≥
1− 5

√
λ.

Proof. To verify the first property, we simply plug in
dH(v) = (β/2)(1− λ) into Equation A.1, obtaining

ρ(v) ≥ (1/2)((1− λ)/(1 + λ))(1−
√
λ)

> (1/2)(1− 2λ)(1−
√
λ)

> (1/2)(1− 3
√
λ) .

To verify the second property, let us say that
dH(v) ≥ dH(w). If we had dH(v) ≥ (β/2)(1 +√
λ) then it is easy to see that ρ(v) = 1 because

dH(v)/max {dH(v), β − dH(v)} = dH(v)/dH(v) = 1,
and the min term in Equation A.1 also comes out
to 1. Thus the only case left to consider is when
dH(v) ≤ (β/2)(1 +

√
λ), and so by property P2 of an

EDCS, dH(w) ≥ β(1 − λ) − dH(v) > (β/2)(1 − 2
√
λ).

Note that in this case

dH(w)

max{dH(w), β − dH(w)} ≥ (β/2)(1− 2
√
λ)

(β/2)(1 + 2
√
λ)

=
1− 2

√
λ

1 + 2
√
λ

≥ 1− 4
√
λ .

Similarly, since dH(v) ≥ dH(w), we have

dh(v)

max {dH(v), β − dH(v)} ≥ 1− 4
√
λ .

Thus, recalling that dH(v)+dH(w) ≥ β(1−λ), we have:

pr(v) + pr(w)

≥
(

1− 4
√
λ
)

(

1

2
+

dH (v)− β/2

β
√
λ

+
1

2
+

dH (w)− β/2

β
√
λ

)

=
(

1− 4
√
λ
)

(

1 +
dH (v) + dH (w)− β

β
√
λ

)

≥
(

1− 4
√
λ
)

(

1 +
β (1− λ)− β

β
√
λ

)

=
(

1− 4
√
λ
)(

1−
√
λ
)

≥
(

1− 5
√
λ
)

.

(A.2)

The proof of Theorem 3.3 is almost complete. As
argued in the proof sketch in Section 5, it is easy
to see from [20] that any graph G has a maximum
fractional matching whose support consists of disjoint
odd cycles and disjoint individual edges: the individual

edges have value 1, the edges on the odd cycles all have
value 1/2, and all other edges have value 0. Let MG

f

be such a maximum matching in G. We will prove
that val(MH

f ) ≥ (1 − 5
√
λ)val(MG

f ). Note that MG
f

gets a value of 1 from each individual edge not on a
cycle, and a value of d/2 for each odd cycle of length
d. We will now show that MH

f always gains at least

a (1 − 5
√
λ) fraction of what MG

f gains from these

edges/cycles. Since we set λ = ǫ2/25, this proves that
val(MH

f ) ≥ val(MG
f )(1− ǫ).

For each isolated edge (v, w) in MG
f we have by

property P2 of an EDCS that dH(v)+dH(w) ≥ β(1−λ),
so by property 2 of Lemma A.1 we get that ρ(v)+ρ(w) ≥
(1−5

√
λ); in other words, MH

f gains at least a (1−5
√
λ)

fraction of what MG
f gains on that edge. For a cycle

of odd length d, let v be the vertex on the cycle with
maximum dH(v). It is not hard to see that dH(v) ≥
β
2 (1 − λ), since otherwise by property P2 of an EDCS
the neighbors of v on the cycle would have degree higher
than dH(v). Thus, by Property 1 of Lemma A.1 we
have that ρ(v) ≥ (1/2)(1−3

√
λ) > (1/2)(1−5

√
λ). The

remainder of the cycle clearly contains (d−1)/2 disjoint
edges in G, and by the argument above, for each of these
edges MH

f gains a profit of at least (1 − 5
√
λ). Thus,

the total profit gained by MH
f from the cycle is at least

(1/2)(1−5
√
λ)+((d−1)/2)(1−5

√
λ) = (d/2)(1−5

√
λ);

again at least a (1− 5
√
λ) fraction of what MG

f gains.

B Proof of Lemma 5.1

Recall that we are dealing with an (unweighted)
EDCS(G, β, β(1 − λ)). We will explicitly construct a
ǫ-restricted fractional matching MH

f of large size. We
start by defining a function φ(x) for x ∈ [0, β]; loosely
speaking, φ(dH(u)) will end up corresponding to the
profit gained by vertex u in the fractional matchingMH

f .

(B.3) φ(x) = min

{

1,
x

2(β − x)

}

.

Lemma B.1. If a, b ∈ [0, 1] and a + b ≥ β(1 − ζ) for
some ζ ≥ 0, then φ(a) + φ(a) ≥ 1− 5ζ.

Proof. We first show that if a+b ≥ β then φ(a)+φ(b) ≥
1. The claim is trivially true if φ(a) ≥ 1 or φ(b) ≥ 1,
so we can assume that φ(a) < 1 and φ(b) < 1. In this
case, we have

φ(a) + φ(b) =
a

2(β − a)
+

b

2(β − b)

≥ a

2b
+

b

2a
=

a2 + b2

2ab
=

(a− b)2

2ab
+ 1 ≥ 1

Now, let φ′(x) = d
dxφ(x). To complete the lemma, it

is sufficient to show that we always have φ′(x) ≤ 5/β.
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To prove this inequality, first note that if x ≥ 2β/3
then φ(x) = 1. Thus, if x > 2β/3 then φ′(x) = 0.
Now, if x ≤ 2β/3 then φ′(x) = d

dx
x

2(β−x) = β
2(β−x)2 .

This function clearly increases with x, and is maximized
precisely at x = 2β/3, in which case φ′(x) = 9

2β < 5
β , as

desired.

Lemma B.2. Given any EDCS(G, β, β(1 − λ)), H, we
can find two disjoint sets of vertices X and Y that
satisfy the following properties. (Recall the function φ
defined in Equation B.3).

1. |X|+ |Y | = 2µ(G).

2. There is a perfect matching in Y using edges in H.

3. Letting σ = |Y |/2 +
∑

x∈X φ(x), we have σ ≥
µ(G)(1− 5λ).

4. All edges in H have at least one endpoint in Y .

Proof. Let MG be some maximum integral matching in
G. Some of the edges in MG are in H, while others are
in G\H. Let X0 contain all vertices incident to edges in
MG∩ (G\H), and let Y0 contain all vertices incident to
edges in MG ∩H. We now show that X0 and Y0 satisfy
the first three properties of the lemma. Property 1 is
satisfied because X0∪Y0 consists of all matched vertices
in MG. Property 2 is satisfied by definition of Y0. To
see that property 3 is satisfied, we show that the vertices
in X0 ∪ Y0 contribute an average of at least (1− 5λ)/2
to σ. The vertices in Y0 each contribute exactly 1/2.
Now, X0 consists of |X0|/2 disjoint edge in G \H, and
by property P2 of an EDCS, for each such edge (x, x′)
we have dH(x) + dH(x′) ≥ β(1 − λ), so by Lemma B.1
we have φ(x)+φ(x′) ≥ 1−5λ, and between them x and
x′ contribute an average of at least (1− 5λ)/2 to σ, as
desired.

However, the sets X0 and Y0 might not satisfy
property 4 of Lemma B.2. We first show how to
transform X0, Y0 to sets X1, Y1 such that the first three
properties are still satisfied, and there are no edges in H
between X1 and V \ (X1 ∪ Y1); at this stage, however,
there will possibly be edges in H between vertices in
X1. To construct X1, Y1, we start with X = X0 and
Y = Y0, and present a transformation that terminates
with X = X1 and Y = Y1. Recall that X0 has a
perfect matching using edges G \ H. The set X will
maintain this property throughout the transformation,
and each vertex x ∈ X always has a unique mate
x′. The construction does the following: as long as
there exists an edge (x, z) in H where x ∈ X and
z ∈ V \(X∪Y ), let x′ be the mate of x; we then remove
x and x′ from X and add x and z to Y . Property 1 is
maintained because we removed two vertices from |X|

and added two to |Y |. Property 2 is maintained because
the vertices we added to Y were connected by an edge
in H. Property 3 is maintained because X clearly still
has a perfect matching in G \ H, and for every pair
(x, x′) the average contribution to σ among x and x′

is still at least (1 − 5λ)/2, as above. We continue this
process while an edge (x, y) in H from X to V −X −Y
exists; the process terminates because each time we are
removing two vertices from X and adding two to Y . We
thus end with two sets X1, Y1 such that the first three
properties of the lemma are satisfied, and there are no
edges between X1 and V −X1 − Y1.

We now set X = X1 and Y = Y1 and show how to
transform X and Y into two sets that satisfy all four
properties of the lemma. Recall that X1 still contains
a perfect matching using edges in G \ H: denote this
matching by MG

X . Our final set X, however, will not
guarantee such a perfect matching. Let MH

X be a
maximal matching in X using edges in H. Consider
the edge set E∗

X = MG
X ∪MH

X . Now, E∗
X is a degree 2

graph so it can be decomposed into vertex-disjoint path
and cycles. Since both MG

X and MH
X are matchings,

the paths and cycles alternate between edges in MG
X

and edges in MH
X ; in particular, they alternate between

edges in G \ H and edges in H. Each cycle contains
an even number of vertices because otherwise it could
not alternate. Because MG

X is a perfect matching, every
vertex in X1 is in a path or cycle, and each path starts
and ends with edges in MG

X . In particular, each path
contains an even number of vertices and is of the form
x1, x

′
1, x2, x

′
2, ..., xk, x

′
k, where for every i ≤ k there is

an edge (xi, x
′
i) in MG

X , and for every i < k there is an
edge (x′

i, xi+1) in MH
X .

We now perform the following transformation. For
each cycle C in E∗

X , we simply remove all the vertices
in C from X and add them to Y . Property 1 is
preserved because we are moving vertices from one
set to the other. Property 2 is preserved because C
contains a perfect matching in H since every second
edge in C is in MH

X . We will argue that property 3 is
preserved momentarily. We now continue describing the
transformation. For each path P in E∗

X , if P consists of
a single edge in MG

X , we do nothing. Else, if P is longer,
then P is of the form x1, x

′
1, x2, x

′
2, ..., xk, x

′
k indicated

above. The transformation moves all vertices except x1

and x′
k (the ends of the path) from X to Y . Property

1 is clearly preserved. Property 2 is preserved because
the vertices moved had a perfect matching among them
in MH

X and so in H (the perfect matching that matches
x′
i to xi+1 for i < k).

We must now check that property 3 is preserved by
this transformation. As before, this involves showing
that after the transformation, the average contribution
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of a vertex in X ∪ Y to σ is at least (1 − 5λ)/2.
(Because every vertex in X is incident to an edge in
E∗

X , each vertex is accounted for in the transformation.)
Now, all vertices that were in Y1 remain in Y , so
their average contribution remains at 1/2. We thus
need to show that the average contribution to σ among
vertices in X1 remains at least (1 − 5λ)/2 after the
transformation. We will in particular show that given
any cycle C or path P in E∗

X , the average contribution
of vertices in that path/cycle is at least (1−5λ)/2 after
the transformation. For any cycle C, all the vertices
are moved to Y and thus each contribute exactly 1/2
to σ. For any path P = (x, x′) that consists of a
single edge in MG

X , we still have that by property
P2 of an EDCS, dH(xi) + dH(x′

i) ≥ β(1 − λ), so by
Lemma B.1, φ(x) + φ(x′) ≥ 1 − 5λ. Finally, consider
a path P = (x1, x

′
1, ..., xk, x

′
k). We have that for all i,

(xi, x
′
i) ∈ G \ H, so dH(xi) + dH(x′

i) ≥ β(1 − λ), so
∑

x∈P dH(x) ≥ kβ(1− λ). On the other hand, since for
all i < k there is an edge (x′

i, xi+1) in MH
X and so in H,

we have by property P1 of an EDCS that for all i < k,
dH(x′

i) + dH(xi+1) ≤ β. Thus

dH(x1) + dH(x′
k) =

∑

x∈P

dH(x)−
∑

i<k

(dH(x′
i) + dH(xi+1))

≥ kβ(1− λ)− (k − 1)β

= β − kβλ .

(B.4)

Thus, by Lemma B.1, we have φ(x1) + φ(x′
k) ≥

1−5kλ. We are now ready to bound the average contri-
bution to σ among vertices in P after the transforma-
tion. Since we have the endpoints contributing a total of
at least 1−5kλ and 2k−2 vertices that move to Y each
contributing 1/2, the average contribution of vertices on
the path to σ is at least ((1−5kλ)+(1/2)(2k−2))/(2k) =
(1− 5λ)/2

Our transformation thus preserves properties 1, 2,
and 3. It now remains to verify that the resulting sets
X and Y satisfy property 4. To see this, note that
we took a maximal matching MH

X of the set X1 among
edges in H, and moved all the matched vertices in MH

X

to Y . Thus all the vertices that remain in X are free
in MH

X , and so by definition of a maximal matching,
there are no edges in H between vertices in X after the
transformation. There are also no edges in H between
X and V \(X∪Y ) because there no such edges originally
when X = X1, and our transformation only moved
edges from X to Y , which cannot create new edges
between X and V \ (X ∪ Y ).

We now want to construct (for the proof) a ǫ-
restricted fractional matching MH

f using the edges in

H such that val(MH
f ) ≥ (2/3 − ǫ)µ(G). We start by

finding two sets |X| and |Y | that satisfy the properties
of Lemma B.2. Now, by property 2 of Lemma B.2,
|Y | contains a perfect matching MH

Y using edges in
H. Let Y − be a subset of Y obtained by randomly
sampling exactly half the edges of MH

Y and adding their
endpoints to Y −. Let Y ∗ = Y \ Y −, and observe that
|Y −| = |Y ∗| = |Y |/2.

Let H∗ be the subgraph of H (not of G) induced
by X ∪ Y ∗. We define a fractional matching MH∗

f on
the edges of H∗ in which all edges have value at most
ǫ. We will then let our final fractional matching MH

f

be the fractional matching MH∗
f joined with the perfect

matching in H of Y − (so MH
f assigns value 1 to the

edges in this perfect matching). MH
f is, by definition, a

ǫ-restricted fractional matching.
We now give the details for the construction of

MH∗
f . Let V ∗ = X ∪ Y ∗ be the vertices of H∗, and let

E∗ be its edges. For any vertex v ∈ V ∗, define d∗H(v) to
be the degree of v in H∗. Recall that by property 4 of
Lemma B.2, if x ∈ X then all the edges of H incident to
x go to Y (but some might go to Y −); thus, for x ∈ X,
we clearly have E[d∗H(x)] = dH(x)/2.

We now define MH∗
f as follows. For every x ∈ X,

we arbitrarily order the edges of H incident to x, and

then we assign a value of min
{

ǫ, 1
β−dH(x)

}

to the edges

one by one, stopping when either val(x) reaches 1 or
there are no more edges in H incident to x, whichever
comes first (in the case that val(x) reaches 1 the last

edge might have value less than min
{

ǫ, 1
β−dH(x)

}

). We

now verify that MH∗
f is a valid fractional matching in

that all vertices have value at most 1. This is clearly
true of vertices x ∈ X by construction. For a vertex
y ∈ Y ∗, it suffices to show that each edge incident to
y receives a value of at most 1/dH(y) ≤ 1/d∗H(y). To
see this, first note that the only edge edges to which
MH∗

f assigns non-zero values are in X × Y ∗. Any
such edge (x, y) receives value at most 1/(β − dH(x)),
but since (x, y) is in MH∗

f and so in H, we have by
property P1 of an EDCS that dH(y) ≤ β − dH(x), and
so 1/(β − dH(x)) ≤ 1/dH(y), as desired.

By construction, for any x ∈ X, we have that in
MH∗

f

(B.5)

val(x) = min

{

1, d∗H(x) ·min

{

ǫ,
1

β − dH(x)

}}

Consider the simple accounting on edges in E∗ where
for every edge (x, y) ∈ X × Y ∗ we set ax(x, y) = 1 and
ay(x, y) = 0, while for other edges (y, y′) we effectively
ignore the edge by setting ay(y, y

′) = ay′(y, y′) = 0
In this accounting, we clearly have ρ(x) = val(x) for
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x ∈ X and ρ(y) = 0 for y ∈ Y ∗. By Observation 1
we can lower bound MH∗

f by summing over all ρ(x) for
x ∈ X. To this end, we prove the lemma below; recall
that E[d∗H(x)] = dH(x)/2, that β ≥ 32λ−3 >> ǫ−1, and
the definition of φ(x) from Equation B.3.

Lemma B.3. For any x ∈ X, E[ρ(x)] ≥ (1 −
λ)φ(dH(x)).

Proof. The proof is simply algebraic manipulation com-
bined with the Chernoff bound. First consider the case
in which dH(x) ≤ β/2. In this case 1

β−dH(x) ≤ 2/β < ǫ,

and d∗H(x) ≤ dH(x) ≤ β − dH(x), so ρ(x) =
d∗

H
(x)

β−dH(x) .

Thus since E[d∗H(x)] = dH(x)/2, we have by definition
of Φ that:

E[ρ(x)] =
E[d∗H(x)]

β − dH(x)
=

dH(x)/2

β − dH(x)
= Φ(dH(x))

Now consider the case in which dH(x) > β/2. Then,

E[d∗H(x)] =
dH(x)

2
>

β

4
≥ 8λ−3 .

Thus by the Chernoff bound

Pr[d∗H(x) < (1− λ

2
)(
dH(x)

2
)]

< e−E[d∗

H
(x)](λ

2
)2/2

≤ e−λ−1

<
λ

2
,

(B.6)

where the last inequality follows from simple calculus
and the fact that 0 ≤ λ ≤ 1. Now, we start by
considering the fringe case where dH(x) ≥ β − ǫ−1,

and so min
{

ǫ, 1
β−dH(x)

}

= ǫ. By Equation B.6 with

probability at least (1 − λ
2 ), we have that d∗H(x) ≥

(β− 1

ǫ
)(1−λ

2
)

2 >> ǫ−1. So with probability at least (1− λ
2 )

we have d∗H(x)ǫ > 1, so E[ρ(x)] ≥ (1− λ
2 ) ≥ (1− λ

2 )φ(x).
We are thus left with the case where dH(x) > β/2,

and ρ(x) = min
{

1,
d∗

H
(x)

β−dH(x)

}

. Again by Equation B.6

we have that with probability at least (1− λ/2),

d∗H(x)

β − dH(x)
≥ dH(x)(1− λ/2)

2(β − dH(x))
≥

(

1− λ

2

)

φ(dH(x)) .

In other words, with probability at least (1 − λ/2)
we have ρ(x) ≥ (1 − λ

2 )φ(dH(x)), so E[ρ(x)] ≥ (1 −
λ
2 )

2φ(dH(x)) > (1− λ)φ(dH(x)), as desired.

We have almost completed the proof of Lemma 5.1. By
Lemma B.3 and Observation 1, we are able to lower
bound val(MH∗

f ). In particular,

val(MH∗
f ) ≥

∑

x∈X

ρ(x) ≥ (1− λ)
∑

x∈X

φ(dH(x)) .

Recall that we constructed MH
f by taking the fractional

value MH∗
f and adding in the half of the edges from Y

that we had removed (i.e. the edges in Y −). There are
in total |Y −|/2 = |Y |/4 such edges so

val(MH
f ) ≥ (1− λ)

∑

x∈X

φ(dH(x)) +
|Y |
4

.

We now lower bound this quantity using property 3 of
Lemma B.2.

val(MH
f ) ≥ (1− λ)

∑

x∈X

φ(dH(x)) +
|Y |
4

= (1− λ)
∑

x∈X

φ(dH(x)) +
|Y |
2

− |Y |
4

≥ (1− λ)µ(G)(1− 5λ)− |Y |
4

≥ (1− 6λ)µ(G)− |Y |
4

.

(B.7)

To complete the proof, recall that Y contains a perfect
matching in H of |Y |/2 edges, so if |Y | ≥ 4µ(G)/3 then
there already exists a matching in H of size 2µ(G)/3, so
the main lemma we are trying to prove (Lemma 5.1) is
trivially true. We can thus assume that |Y | < 4µ(G)/3,
in which case Equation B.7 yields that

val(MH
f ) ≥ (1− 6λ)µ(G)− |Y |

4

> (1− 6λ)µ(G)− µ(G)

3

=

(

2

3
− 6λ

)

µ(G) .

This completes the proof because in Lemma 5.1 we set
λ = ǫ/6.

C A Violation Oracle: proof of Lemma 6.3

In our earlier proof or Lemma 6.3 we achieved all the
desired bounds to within a logn factor. This logn factor
came from the fact that we used balanced binary search

trees for N
G\H
v and NH

v . To remove the log n factor,
we maintain exactly the same oracle as in the earlier

proof, except that we change the data structures N
G\H
v

and NH
v to allow constant time per operation. The

new data structures are extremely simple. Recall that a
data structure for vertex v will include all its neighbors
w. To avoid recourse to hash tables (and the resulting
randomized algorithm), all the different data structures
for all vertices v will use pointers to the global list of
vertices V .

Lemma C.1. There exists a data structure which we
call a High Threshold Table (htt), which contains
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some subset of V of elements w each with an associated
key(w). The htt also has a threshold parameter high,
and supports the following operations in constant time.

1. Insert or delete some element w (a key change
can be implemented as a deletion followed by an
insertion).

2. Return some element w with key(w) > high (or
nil if none exists).

3. Increase or Decrease high by 1.

There also exists an analogous data structure Low
Threshold Table (ltt) that is identical except it stores
a threshold low, and operation 2 requires finding an
element w with key(w) < low.

Proof. We group all elements w into buckets according
to key(w), so bucket Bk contains all w for which
key(w) = k. We can store the buckets as doubly
linked lists, with pointers from element w in the list
to the vertex w in V , and vice versa. We then keep
an unordered list L of all indices k such that k > high
and Bk is non-empty. We maintain a pointer from each
bucket Bk to its position in L (if k ∈ L).

Operation 1 above can be implemented as follows:
to insert some vertex w into NH

v , the algorithm simply
puts w in bucket Bkey(w). If w is the only vertex in
Bkey(w) and key(w) > high then it also adds index
key(w) to L. To delete some vertex w from the htt,
the algorithm deletes w from Bkey(w), and if Bkey(w)

is now empty it deletes index key(w) from L. For
operation 2, the algorithm finds the first element k of
L, and then picks an arbitrary element w from Bk; by
definition of L this will guarantee that key(w) > high.
Finally, for operation 3, if high moves by 1, let k be the
original high. If high decreased by 1, the algorithm
simply adds k to L if bucket Bk is non-empty. If high
increased by 1, the algorithm removes (k+ 1) from L if
(k+1) was in L. All three operations can thus be done
in constant time.

Going back to the proof of Lemma 6.3, for NH
v

we can use an htt that includes the same elements w
as in the earlier proof in Section 6 (where we used a
balanced binary search tree for NH

v ). We set key(w) =
dH(w) and high = β − dH(v). The implementation
of the operations vo.find(v) and vo.reorient(v) are
then exactly the same as in the earlier proof. To
implement vo.change-status(v,w), we might have to
increase/decrease high by 1 if the update to edge (v, w)

increased/decreased dH(v). Similarly, for N
G\H
v we use

an ltt with low = β(1− λ)− dH(v).

D Maintaining an EDCS in general graphs

In this section we prove Theorem 3.2. The first half of
the proof is nearly identical to that in Section 6 modulo
some parameter changes, but for the sake of clarity
we repeat the whole proof with the new parameters.
Recall that updates to H (the EDCS) can be external or
internal. An external update is an update made by the
dynamic adversary which inserts or deletes an edge inG.
This external update can lead certain edges to violate
the EDCS properties, so the algorithm that maintains
H can also make internal updates which add or remove
edges from H to maintains these properties. Recall that
an external deletion of edge (u, v) also removes the edge
from H, while an external insertion of (u, v) only affects
G, notH (though the external insertion may be followed
up by an internal insertion which adds the edge to H).

Intuitively, the algorithm only needs to perform an
internal update on an edge if that edge violates one
of the EDCS properties. In Section 6 we argued that
such an algorithm only performs a small number of
internal updates (Lemma 6.1). The problem is that in
general graphs there could be many edges and finding a
violating edge is difficult. If the algorithm examines a
large number of edges that are not violating, we need to
somehow guarantee that progress is still being made.
To this end we observe that if an algorithm comes
across an edge that is close to violating one of the
properties, it makes sense to fix it on the spot. This
motivates a generalization of the definition of locally
repairing (Definition 4) in Section 6. Recall that H is
an (unweighted) EDCS(G, β, β(1−λ)), and that by the
statement of Theorem 3.2, β ≥ 36λ−1.

Definition 5. We say that algorithm A for maintain-
ing H is locally balancing if:

1. Algorithm A only internally deletes edge (u, v) from
H if before the deletion dH(u)+dH(v) > β(1−4λ/9)
(i.e. the edge was close to violating property P1).

2. Algorithm A only internally inserts edge (u, v) into
H if before the insertion dH(u) + dH(v) < β(1 −
5λ/9) (i.e., the edge was close to violating property
P2).

Let us say that an edge is unbalanced if it satis-
fies one of the inequalities above, i.e. if it is a candi-
date for being added or removed from H by a locally
balancing algorithm. Note that after the locally bal-
ancing algorithm updates the edge, it is no longer un-
balanced. If before the update edge (u, v) was in H
and dH(u) + dH(v) > β(1 − 4λ/9), then since remov-
ing the edge only decreases its edge degree by 2, af-
ter the update (u, v) ∈ G \ H and dH(u) + dH(v) >
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β(1−4λ/9)−2 ≥ β(1−5λ/9), so the edge is no longer un-
balanced (The last inequality follows from β ≥ 36λ−1).
Similarly, if before the update (u, v) was in G \H and
dH(u) + dH(v) < β(1 − 5λ/9) then after the update
(u, v) ∈ H and dH(u) + dH(v) ≤ β(1 − 5λ/9) + 2 ≤
β(1− 4λ/9).

Lemma D.1. If an algorithm A for maintaining H is
locally balancing, then A performs an amortized O(1/λ)
internal updates to H for each update to G.

Proof. The proof is very similar to that of Lemma 6.1.
We use the same potential function

Φ =
∑

(u,v)∈H

(dH(u) + dH(v))− β(1− λ/2)
∑

v∈V

dH(v)

We will show that an internal insertion or deletion to
H decreases Φ by at least βλ/18, while an external
deletion to G increases Φ by at most 2β, and an external
insertion has no effect on φ; together these facts clearly
imply the lemma. Given any update to edge (x, y), we
let do(x), do(y), dn(x), dn(y) (O for old, N for new)
denote the degrees of x and y before and after the edge
update. Let ∆Φ denote the change to Φ due to the
update.

Consider first an internal insertion of edge (x, y).
Clearly

∑

v∈V dH(v) increases by 2. To bound the total
change to

∑

(u,v)∈H(dH(u) + dH(v)), observe that all
the edge degrees of edges incident to x and y go up
by one, so the total increase in edge degree of all these
edges is precisely do(x) + do(y). We also added a new
edge of edge degree dn(x)+dn(y) = do(x)+do(y)+2;
thus ∆Φ = 2(do(x) + do(y)) + 2 − 2β(1 − λ/2). But
because our algorithm is locally balancing we know that
for an internal insertion do(x) + do(y) < β(1 − 5λ/9),
so ∆Φ < 2β(1−5λ/9)+2−2β(1−λ/2) = −βλ/9+2 ≤
−βλ/18, as desired. (The last inequality follows from
β ≥ 36λ−1.)

Consider an internal deletion of edge (x, y). The
total change to

∑

v∈V dH(v) is now −2. The deletion
causes all edge degrees of edges incident to x and y
to go down by one, so the total change to all these
edge degrees is do(x) + do(y). We also deleted an
edge of edge degree do(x) + do(y). Thus, ∆Φ =
−2(do(x)+do(y))+2β(1−λ/2). Since our algorithm is
locally balancing we know that for an internal deletion
do(x) + do(y) > β(1 − 4λ/9), so ∆Φ ≤ −βλ/9, as
desired.

Consider finally an external deletion of edge (x, y).
The same argument as for internal deletions yields
∆Φ = −2(do(x)+ do(y))+ 2β(1−λ/2). Now however,
we have no lower bound on do(x)+do(y) except that it
is clearly positive. This yields ∆Φ ≤ 2β(1− λ/2) < 2β,
as desired.

An external insertion only changes G and not H, so
it has no effect on φ.

The main difference between maintaining an EDCS
in general graphs compared to small arboricity graphs is
that because we can have many edges, we cannot afford
to alert all the owned neighbors of some vertex v every
time dH(v) changes. The basic idea is that instead of
directly working with dH(v), each vertex v will store a
public value pub(v), and when the algorithm determines
what to do with an edge (v, w), it will only look at its
public edge degree, pub(v) + pub(w). The algorithm
will avoid excessive computation by only occasionally
changing pub(v), while guaranteeing that the algorithm
nonetheless functions property by ensuring that pub(v)
is always not too far off from dH(v).

Definition 6. We say that an edge (v, w) is violating
if (v, w) violates one of the EDCS properties: i.e. if
(v, w) ∈ H and dH(v) + dH(w) > β, or (v, w) ∈ G \H
and dH(v) + dH(w) < β(1 − λ). We say that an
edge (v, w) is publicly unbalanced if (v, w) ∈ H and
pub(v) + pub(w) > β(1 − 2λ/9) or if (v, w) ∈ G \ H
and pub(v) + pub(w) < β(1 − 7λ/9). We say that an
edge is publicly balanced if it is not publicly unbalanced.

Our algorithm will always maintain the following
three invariants:

Publicity Invariant: |pub(v)− dH(v)| ≤ βλ/9.

Correctness Invariant: After the algorithm finishes
processing any update to G, all edge are publicly
balanced.

Balancing Invariant: The algorithm only performs in-
ternal insertions/deletions on edges in H that are pub-
licly unbalanced.

It is is not hard to see that invariants 1 and 2 together
guarantee that after the algorithm finishes processing an
update to G, there are no violating edges in the EDCS.
Invariants 1 and 3 together guarantee that the algorithm
is locally balancing (Definition 5).

To find locally unbalanced edges, we present an
analogue of the violation oracle of Lemma 6.3. One of
the main reasons it is easier to work with pub(v) instead
of the real dH(v) is that although updating an edge
(u, v) can change dH(u) and dH(v), it cannot in and of
itself create new publicly unbalanced edges; a publicly
unbalanced edge can only be created by changing pub(v)
or pub(w). That being said, by the publicity invariant
updating an edge (u, v) can indirectly force a change to
pub(v) or pub(w).

Note that in general graphs, we use Theorem 2.1
to maintain an orientation of the edges of G such that
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each vertex owns O(
√
m) edges. But unlike in the small

arboricity case, our algorithm does not need a separate
procedure for handling edge reorientations because by
Theorem 2.1 every update to G only causes O(1)
reorientations, so we can bluntly model a reorientation
as a deletion of the edge followed by an insertion of the
same edge pointing in the other direction.

Lemma D.2. Suppose that we have a graph G for which
we maintain a dynamic orientation in which each vertex
owns O(

√
m) edges. There exists a data structure pbo

(public balancing oracle) on the graph G that supports
the following operations:

• pbo.find(v) returns all publicly unbalanced edges
incident to v in time O(

√
m + (number of publicly

unbalanced edges returned)).

• pbo.change-status(v, w) adds/removes edge (v, w)
from H, or inserts/deletes (v, w) from G in O(1)
time.

• pbo.change-public(v, p) changes the value of
pub(v) to p in time O(

√
m+|p−(original pub(v))|).

Proof. The proof is similar to that of Lemma 6.3. We
use the data structures High Threshold Table (htt) and
Low Threshold Table (ltt) from Lemma C.1. For every
vertex v, we build a htt NH

v which contains all vertices
w for which (v, w) ∈ H and (v, w) is not owned by v; we
set key(w) = pub(w) and high = β(1−2λ/9)−pub(v).

We also build an ltt called N
G\H
v which contains all

vertices w for which (v, w) ∈ G \ H and (v, w) is not
owned by v; we set key(w) = pub(w) and low =
β(1− 7λ/9)− pub(v).

To implement pbo.find(v), we first find all the
publicly unbalanced edges that are owned by v in
O(

√
m) time by simply scanning the O(

√
m) owned

edges of v. We now need to find all publicly unbalanced
edges (v, w) that are not owned by v. Let us first find
all edges (v, w) ∈ H that are not owned by v and for
which pub(v)+pub(w) > β(1−2λ/9), which is precisely
the set of elements w ∈ NH

v for which key(w) > high.
Since NH

v is an htt we can find one such element w in
O(1) time. To find all of them, we repeatedly find such
an element w and then temporarily remove it from the
htt until we can no find no more such elements w: we
then insert all the temporarily removed elements back
into the htt. Finding the publicly unbalanced edges not
owned by v thus requires a total time of O(1+ (number
of elements w found)). We can similarly find all edges
(v, w) ∈ G \H that are not owned by v and for which
pub(v)+pub(w) < β(1−7λ/9) by looking for elements

w ∈ N
G\H
v for which key(w) < low.

Implementing pbo.change − status(v, w) is easy,
because the values pub(v) and pub(w) do not change.
Thus, the most we would have to do is add or remove

(v, w) from one of NH
v , N

G\H
v , NH

w , or N
G\H
w , which can

be done in O(1) time.
To implement pbo.change − public(v, p), let p0(v)

be the value of pub(v) before the change. First, for all
edges (v, w) that are owned by v, the change to pub(v)

will change key(v) from p0 to p in NH
w or N

G\H
w . A

key change in an htt or ltt can be implemented in
O(1) time, and our orientation guarantees that v owns
O(

√
m) edges, so this operation takes O(

√
m) time.

Secondly, we need to change high and low in NH
v and

N
G\H
v since they are defined in terms of pub(v). In

particular, we have to add (p0 − p) to high and low
(note that this expression might be negative). We know
that in an htt or ltt we can change high or low by
1 in O(1) time, so we can change it by (p0 − p) in time
O(|p0 − p|), as desired.

Lemma D.3. There exists a locally balancing algorithm
A for maintaining H such that the amortized update
time of A per update to G is O((mλ−1/β)(1+ number
of internal updates performed by A))

Proof. Just as in Lemma 6.2, we do not need to
bound the number of internal updates: as long as the
algorithm is locally balancing, Lemma D.1 does the
bounding for us. As discussed above, the algorithm
A will satisfy the conditions of the lemma as long
as it maintains the three invariants above (publicity,
correctness, balancing). The algorithm maintains a
stack (stack) of all vertices that might potentially
violate the publicity invariant; this invariant can only
become violated when dH(v) changes, which in turn
only occurs when we add/remove edge (v, w) from H,
so whenever we add/remove an edge (v, w) we put v
and w on stack. If a vertex v on the stack violates
the publicity invariant, we change pub(v) to dH(v);
changing pub(v) can create publicly unbalanced edges,
so we use pbo.find(v) to detect and fix all of these.

The full algorithm is defined in Figure 2. We first
verify that the invariants are maintained. As discussed
above, the publicity invariant is maintained because
whenever dH(v) changes due to an edge change in H
the algorithm algorithm adds v to stack, and explicitly
maintains the publicity invariant for all vertices on
stack.

To see that the correctness invariant is maintained,
note that an edge (v, w) can only become unbalanced for
two reasons: it can be a new edge added to G, or one
of pub(v) or pub(w) must have changed. The first lines
of the update procedure in Figure 2 explicitly handle
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Update (u, v) in G
if (u, v) is inserted into G

if pub(u) + pub(v) < β(1− 7λ/9)
add (u, v) to H

if (u, v) is deleted from G
if (u, v) ∈ H

remove (u, v) from H
pbo.change-status(u, v)
stack.push(u); stack.push(v)
While !stack.Empty()
• w = stack.pop()
• if |pub(w)− dH(w)| > βλ/9

balance(w)

Balance (v)
pbo.change-public(v, dH(v))
S = pbo.F ind(v) \\ uses new pub(v)
For each (v, w) ∈ S
• if (v, w) ∈ H,

remove (v, w) from H
• if (v, w) 6∈ H,

add (v, w) to H
• pbo.change-status(v, w)
• stack.push(w)

stack.push(v)

Figure 2: How the algorithm of Lemma D.3 handles an
update to G

any unbalanced edge inserted into G by adding it to H.
The only time we ever change pub(v) is in the balance
procedure, which after changing pub(v) finds and fixes
all unbalanced edges incident to v.

The balancing invariant is clearly maintained, since
all internal updates occur through balance(v), which
only updates the unbalanced edges found through
pbo.find(v).

For running time analysis, we are allowed
O(mλ−1/β) time per external update, plus an addi-
tional O(mλ−1/β) time per internal update. We thus
need a charging scheme which shows that all the steps
of the algorithm can be executed in time O(mλ−1/β)
per update to H. In particular, we will think of ev-
ery update to an edge (x, y) in H as giving O(mλ−1/β)
credits to both x and y.

The only non-constant operations performed
by the algorithm are pbo.find(v) and pbo.change-
public(v, dH(v)), both of which only occur during the
execution of balance(v). The key observation is that
balance(v) only occurs when the publicity invariant is
violated for v, and since dH(v) only changes due to an
update of an edge in H incident to v, at least βλ/9
such updates must have occurred since the last time
balance(v) was executed. Thus, by the time balance(v)
is executed again, v has accruedO((mλ−1/β)·(βλ/9)) =
O(

√
m) credits, which pays for the O(

√
m) term in

pbo.find(v) and pbo.change-public(v, dH(v)).
The other terms in pbo.find(v) and pbo.change-

public(v, dH(v)) only require and additional O(1) time
per update to H. In pbo.find(v) the additional term
is O(number of unbalanced edges found), and each
unbalanced edge found leads to an internal update
to H. In pbo.change-public(v, dH(v)), the additional
term is O(|dH(v) − p0|), where p0 was the original
pub(v). For p0 and dH(v) to differ, at least |p0−dH(v)|
updates to edges in H incident to v must have occurred
since the last execution of balance(v) (when pub(v)
was set to p0), so if each of these updates gives O(1)
credits to v, it will be enough to implement pbo.change-
public(v, dH(v)).

Proof of Theorem 3.2 We use the algorithm of
Lemma D.3. Since this algorithm is locally balancing,
by Lemma D.1 each update to G leads to amortized
O(λ−1) internal updates, yielding the O(λ−1) bound
for amortized update ratio. Thus, by Lemma D.3,
an update to G can be processed in amortized time
O(

√
mλ−2/β). By Theorem 2.1, the time to maintain

an orientation in G only causes a constant overhead on
top of this. ✷
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