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Abstract
Let G = (V,E) be a directed graph with positive
edge weights, let s, t be two specified vertices in this
graph, and let π(s, t) be the shortest path between
them. In the replacement paths problem we want
to compute, for every edge e on π(s, t), the shortest
path from s to t that avoids e. The naive solution
to this problem would be to remove each edge e, one
at a time, and compute the shortest s − t path each
time; this yields a running time of O(mn + n2 logn).
Gotthilf and Lewenstein [8] recently improved this to
O(mn+n2 log logn), but no o(mn) algorithms are known.

We present the first approximation algorithm for
replacement paths in directed graphs with positive
edge weights. Given any ε ∈ [0, 1), our algorithm
returns (1 + ε)-approximate replacement paths in

O(ε−1 log2 n log(nC/c)(m+n logn)) = Õ(m log(nC/c)/ε)
time, where C is the largest edge weight in the graph
and c is the smallest weight.

We also present an even faster (1 + ε) approximate
algorithm for the simpler problem of approximating the
k shortest simple s − t paths in a directed graph with
positive edge weights. That is, our algorithm outputs k
different simple s−t paths, where the kth path we output
is a (1 + ε) approximation to the actual kth shortest
simple s − t path. The running time of our algorithm

is O(kε−1 log2 n(m + n logn)) = Õ(km/ε). The fastest
exact algorithm for this problem has a running time of

O(k(mn+n2 log logn)) = Õ(kmn) [8]. The previous best
approximation algorithm was developed by Roditty [15];

it has a stretch of 3/2 and a running time of Õ(km
√
n)

(it does not work for replacement paths).

Note that all of our running times are nearly optimal
except for the O(log(nC/c)) factor in the replacements
paths algorithm. Also, our algorithm can solve the
variant of approximate replacement paths where we
avoid vertices instead of edges.

1 Introduction

1.1 The Problem A fundamental problem in
graph algorithms is to find the shortest path between
two given points s and t. A natural generalization
is to consider the problem where edges occasionally
fail. More formally, let π(s, t) be the shortest path
from s to t. In the replacement paths problem, we
want to compute, for every edge e to π(s, t), the
shortest s− t path that avoids e.

∗Massachusetts Institute of Technology; Cambrdige, MA,

02139. Email: bernstei@gmail.com

Although there exist several efficient algo-
rithms for computing replacement paths in certain
classes of graphs, no fast algorithms are known for
weighted, directed graphs. The naive approach would
be to remove each edge e on π(s, t), one at a time,
and compute the shortest s − t path each time; this
takes O(mn+n2 log n) time. Gotthilf and Lewenstein
[8] recently improved this to O(mn + n2 log log n),
but no o(mn) algorithms are known.

One of the main motivations for replace-
ment paths is that the problem of computing the
k shortest simple s − t paths in a graph can be
reduced to running k executions of a replacement
paths algorithm. Thus, any O(T (n)) algorithm for
replacement paths yields a O(kT (n)) algorithm for
the k shortest simple paths. As far as we know, all
the fastest algorithms for computing the exact k
shortest simple paths rely on this reduction.

Since no o(mn) algorithm is known for
replacement paths in general graphs, we improve
efficiency by settling for an approximation. In
particular, for every edge e on π(s, t), we want to
return an α approximation to the shortest s − t
path that avoids e, where α is our stretch factor.
It is easy to see that any α-approximate, O(T (n))
algorithm for computing replacement paths also
yields a O(T (n)) algorithm for computing an α-
approximation to the second shortest simple path
(just take the shortest replacement path). Moreover,
Roditty showed in [15] that this in turn yields an
α-approximate, O(kT (n)) algorithm to the k short-
est simple paths algorithm. That is, the algorithm
outputs k different simple s − t paths, where the
length of the kth path is an α-approximation to
the length of the actual kth shortest simple s−t path.

The k shortest simple path problem itself has
many applications, several of which are listed in [6].
The most common application ([6], [12]) is when we
need to find an s−t path that is short, but which also
satisfies several other constraints. If the constraints
are complicated enough, the resulting optimization
problem might take too long to solve directly, so
instead we could find several different short paths
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and choose the one that best satisfies the constraints.
A natural choice would be to compute the k shortest
simple paths, but this could take a while, so it might
be better to compute the approximate k shortest
simple paths.

Another important application of replacement
paths comes from auction theory; they allow us to
compute the Vickrey Prices of edges that are owned
by selfish agents in a network. We do not go into
detail, but intuitively, the value of an edge e for
some shortest path π(s, t) depends on the difference
between the original length of π(s, t), and the length
of the shortest s− t path avoiding e. This is exactly
what replacement paths allow us to compute. See
Nisan and Ronen [14] or Hershberger and Suri [9] for
a more complete overview.

1.2 Existing Algorithms As mentioned before,
the fastest algorithm for replacement paths in general
graphs has a running time of O(mn + n2 log logn),
and the fastest algorithm for k shortest simple paths
has a running time of O(k(mn+n2 log logn)). More-
over, Hershberger et al. proved a Ω(m

√
n) lower

bound for both these problems in the path compari-
son model.

However, many efficient algorithms are known
in special classes of graphs. We mention fastest run-
ning times for replacement paths, but the fastest run-
ning times for k shortest simple s− t paths are just a
factor of k larger. Malik et al. [13] show that in undi-
rected graphs, replacement paths can be computed in
only O(m + n log n) time (See also Hershberger and
Suri [9]). Roditty and Zwick [16] presented an algo-
rithm for directed, unweighted graphs that finds all
replacement paths in Õ(m

√
n) time. Finally, Emek et

al. [5] presented an O(n log3(n)) algorithm for find-
ing replacement paths in weighted, directed planar
graphs (Klein et al. later developed an O(n log2(n))
algorithm [11]).

There are no previous approximation algo-
rithms for replacement paths, but Roditty [15] pre-
sented an approximation algorithm for the k shortest
simple s − t paths in general graphs. The stretch is
3/2, and the running time is O(k(m

√
n+n3/2 log n)).

This is an important result because it showed the pos-
sibility of using approximation to improve the run-
ning time. This possibility was by no means a given;
for example, Dor et al. [3] showed that approxima-
tion cannot help us beat the o(mn) bound for all pairs
shortest paths in weighted, directed graphs.

1.3 Our Contributions We present the first ap-
proximation algorithm for replacement paths; our
algorithm works in directed graphs with positive

edge weights. Given any ε ∈ [0, 1), we present
a (1 + ε) approximate algorithm with a run-
ning time of O(ε−1 log2 n log(nC/c)(m + n log n)) =
Õ(m log(nC/c)/ε), where C is the largest edge weight
in the graph and c is the smallest weight. We also
present an even faster algorithm for the simpler prob-
lem of computing a (1 + ε) approximation to the sec-
ond shortest simple s − t path – the running time is
O(ε−1 log2 n(m + n log n)) = Õ(m/ε). By Roditty’s
reduction in [15], this yields a (1 + ε) approximate
algorithm for finding the k shortest simple paths in
O(kε−1 log2 n(m + n log n)) = Õ(km/ε) time. Note
that all of our running times are nearly optimal, ex-
cept for the log(nC/c) factor in the replacement paths
algorithm.

Moreover, our algorithm beats the Ω(m
√
n)

lower bound for exact replacement paths and ex-
act second shortest simple path in directed, weighted
graphs. Thus, our algorithm is the first to definitively
prove that finding (1 + ε) approximate solutions to
these problems is easier than finding exact solutions;
Roditty’s approximation algorithm [15] for the sec-
ond shortest simple path beat the best known exact
algorithm, but it did not overcome the Ω(m

√
n) lower

bound.

1.4 Related Work The variant of the k shortest
paths problem where we allow paths with cycles turns
out to be much easier – Eppstein showed how to find
the k shortest arbitrary paths in O(m + n log n + k)
time [6].

A generalization of the replacement paths
problem is to compute what can be thought of as
all pairs replacement paths. In particular, we want
to build an oracle that given any triplet of vertices
x, y, v, outputs the length of the shortest x− y path
that avoids v. We might also want to avoid an edge
instead of a vertex. There are several algorithms for
this problem, but the state of the art was developed
by Bernstein and Karger [1]. They present an ora-
cle that has a space of Õ(n2), a constant query time,
and a Õ(mn) construction time. Duan and Pettie
[4] show how to construct an oracle for avoiding two
failures (vertices or edges) – the construction time is
polynomial, the space is only Õ(n2), and the query
time is constant. Chechick et al. [2] showed that if
we are willing to settle for approximate distances then
we can efficiently handle f failures for any constant f
(the approximation ratio is constant but proportional
to the number of failures).

1.5 Organization The rest of this paper is orga-
nized as follows. The first seven sections focus on
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computing an approximate second shortest simple
path because this algorithm contains all of our main
conceptual ideas, but is technically less involved; the
approximate replacement paths algorithm is left for
the very end.

Section 2 describes our notation and covers a
few basic concepts relating to second shortest sim-
ple paths. Section 3 presents our basic approach.
We successively compute a tighter and tighter up-
per bound by breaking our algorithm into O(log n)
phases. Each phase is supposed to find the short-
est simple path from a certain set of available paths,
and each relevant simple path is represented in some
phase – thus, our last step is to take the minimum
result over all the phases. Of course, we cannot ef-
ficiently compute the exact shortest path for each
phase; instead, we show that in each phase, either we
can in fact compute the exact shortest path for this
phase, or the shortest path from a previous phase
closely approximates the one for this phase, so we
can effectively ignore the current phase. This can be
thought of as a generalization of Roditty’s algorithm
[15], which only uses two phases, and does not guar-
antee as close of an approximation between phases.

Section 4 describes our approach more for-
mally. For each phase, we create a modification of
our original graph that captures a subset of possible
second shortest paths; our goal is now to find the
shortest s− t path in this modified graph. However,
the path returned for the modified graph must satisfy
an additional constraint which corresponds to return-
ing a simple path in the original graph. This problem
is easy to solve with multiple runs of Dijkstra’s algo-
rithm, but we cannot afford multiple runs.

Section 5 overcomes this problem by present-
ing a new technique called Progressive Dijkstra. We
do in fact run Dijkstra’s algorithm many times, but
we do not start from scratch each time; instead,
we rely on information from previous runs. Intu-
itively, ordinary Dijkstra works by finding a shorter
and shorter distance to each vertex. But in Progres-
sive Dijkstra, we only bother exploring a vertex when
we find a significantly shorter distance to it. So if
the shortest distance to vertex u in the 20th run is
only slightly better than the previous best distance,
then we can safely ignore the distance in the 20th
run because we are only looking for an approxima-
tion. This technique allows us to upperbound the
number of times a vertex is explored during the se-
quence of Dijkstra runs – the distance to a vertex
can “significantly” decrease only so many times. The
end of section 5 contains pseudocode for our entire
algorithm so far (this does not include the slight im-
provement of section 7).

Section 6 presents a formal analysis of our al-
gorithm, while section 7 shows how we can tweak our
algorithm to slightly improve the running time. Sec-
tion 8 shows how our approximate second shortest
path algorithm can be extended to return approx-
imate replacement paths. Section 9 concludes our
paper and describes a few related open problems.

2 Preliminaries

Let G = (V,E) be a directed graph with non-negative
edge weights, and let n = |V |, m = |E|. Let s
and t be two arbitrary vertices in G between which
we wish to compute a second shortest simple path.
Given any path P , let w(P ) be the length of P .
For any vertices x, y let π(x, y) be the shortest path
from x to y, and let δ(x, y) = w(π(x, y)). Finally,
let π(s, t) = (s = v1, v2, ..., vq = t). We start by
computing shortest paths from s so that we know
π(s, t) and all distances along π(s, t).

For any x, y, let π2(x, y) be the second shortest
simple path from x to y – that is, the shortest simple
path from x to y that is not identical to π(x, y).
Define δ2(x, y) analogously. Given any ε ∈ (0, 1], our
goal is to compute a simple path π̂2(s, t) from s to t
such that letting δ̂2(s, t) be the length of π̂2(s, t) we
have δ2(s, t) ≤ δ̂2(s, t) ≤ (1 + ε)δ2(s, t).

For simplicity, we assume for the rest of the
paper that q (the number of vertices on π(s, t)) is
a power of 2: it is easy to extend the algorithm
to arbitrary values of q. Also, our algorithm will
only output an approximate second shortest distance
rather than the path itself. It is easy to extend our
algorithm to output the corresponding path. We now
define the notion of a detour.

Definition 2.1. Let P be a simple path. A simple
u − v path D(u, v) is said to be a detour of P
if D(u, v)

⋂
P = {u, v} and u precedes v on P .

Throughout this paper all detours are in reference to
the path P = π(s, t).

Lemma 2.1. The second shortest path from s to t
must have the form π(s, vi)◦D(vi, vj)◦π(vj , t) where
D(vi, vj) is a detour (so j > i). See Figure 1.

Proof. We know that π2(s, t) cannot contain all the
edges on π(s, t), so say that it does not contain some
edge (vj , vj+1). The claim is that the shortest s − t
path avoiding this edge has the form above. For note
that π2(s, t) must deviate from π(s, t) at some point
vi before vj+1 (i < j+1). Moreover, it cannot deviate
at two points vi and vi′ (j + 1 > i′ > i) because
it would be faster to just take the original shortest
path from s all the way to vi′ . Similarly, π2(s, t)
must merge back with π(s, t) at some point vk after
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vj , and then just follow π(s, t) from vk to t. Thus,
π2(s, t) = π(s, vi) ◦D(vi, vk) ◦ π(vk, t). See Figure 1.

Figure 1: The standard form for a second shortest
simple path – see Lemma 2.1. If π2(s, t) avoids the
edge (vj , vj+1) then it has a single detour around that
edge.

In finding our approximate second shortest path, we
only consider paths of the form in Lemma 2.1. We
now characterize paths by their detours.

Definition 2.2. Define the span of a detour
D(vi, vj) to be j − i. Let the detour-span of any path
π(s, vi) ◦D(vi, vj) ◦ π(vj , t) be the span of D(vi, vj).

3 Our Approach

In [15], Roditty relies on the fact that it is easy to
find the shortest s − t path that has a large detour-
span. Thus, he starts by finding the shortest s − t
path with a detour-span of at least

√
n and uses this

as an upper bound UB on δ2(s, t). He then shows
that the shortest path with a smaller detour-span is
either easy to find, or it is not that much shorter than
the shortest path with large detour-span. In other
words, either we can efficiently compute the exact
value of δ2(s, t), or the upper bound UB serves as a
3/2-approximation to δ2(s, t).

Our approach generalizes Roditty’s algorithm
[15]. Firstly, instead of directly computing a single
upper bound we progressively improve our upper
bound over a series of O(log q) phases (recall: q is
the number of vertices on π(s, t)). In particular, the
ith phase tries to compute the shortest s − t path
with detour-span in [q/2i, q/2i−1]. We then show that
either we can efficiently compute the exact shortest
path of the ith phase, or the shortest path of some
previous phase j < i is a (1+ε) approximation to the
shortest path for phase i.

It is crucial that the multiplicative error of
each phase is only (1+ ε) (rather than 3/2 as in [15]).
Not only does this improve the overall stretch factor,
but it is also necessary for the improved running time.
The problem is that the multiplicative errors of the
O(log q) phases might blow up to an overall error of
(1 + ε)log q. But whereas (3/2)log q is huge, our error

is tiny because we can choose ε′ = ε/ log q, leading to
an overall error of (1 + ε/ log q)log q = 1 +O(ε).

Definition 3.1. Let Wi be the length of the shortest
s−t path with detour-span in [q/2i, q/2i−1] (as before,
q is the number of vertices on π(s, t)). Let Ui be
the length of the shortest s − t path with detour-
span ≥ q/2i (so Ui = minj≤i{Wj}). Note that
Ulog q = δ2(s, t).

Lemma 3.1. Let ε′ = ε/(2 log q). Say that we can
construct an algorithm which returns O(log q) values
R1, ..., Rlog q that satisfy the following properties.

1. δ2(s, t) ≤ R1 ≤ U1

2. If Ui < Ui−1/(1 + ε′) then δ2(s, t) ≤ Ri ≤ Ui
3. Else, δ2(s, t) ≤ Ri

Then, letting R = mini{Ri}, we have that
δ2(s, t) ≤ R ≤ (1 + ε)δ2(s, t). That is, R is
a suitable approximation to the second shortest
distance.

Remark 3.1. The lemma above spells out our ap-
proach. The algorithm will run in phases, with phase
i outputting Ri. It may seem strange that in prop-
erties 1 and 2, instead of just requiring Ri = Ui,
we allow for the possibility of Ri ≤ Ui. The reason
is that in phase i we consider all paths with detour-
span in [q/2i, q/2i−1], but in doing so we also happen
to consider a few paths with smaller detour-span.

Proof. Let k be the largest index for which Uk <
Uk−1/(1 + ε′) (if no such index exists set k = 1) and
note that by property 2, δ2(s, t) ≤ Rk ≤ Uk (if k =
1 we rely on property 1 instead). We now claim that
δ2(s, t) ≤ Rk ≤ (1 + ε)δ2(s, t). For by our definition
of k we know that Ui ≥ Ui−1/(1 + ε′) for any i > k.
But this means that

Uk ≤ (1 + ε′)Uk+1 ≤ (1 + ε′)2Uk+2 ≤ ...
≤ (1 + ε′)log qUlog q = (1 + ε/(2 log q))log qδ2(s, t)

Which yields

δ2(s, t) ≤ Rk ≤ Uk ≤ (1 + ε/(2 log q))log qδ2(s, t)
≤ (1 + ε)δ2(s, t)(see footnote)1

But if Rk is a (1 + ε) approximation to δ2(s, t) then
R = mini{Ri} ≤ Rk is also a (1+ε) approximation to
δ2(s, t) (property 3 ensures that R ≥ δ2(s, t)), which
completes the proof.

4 The Setup

We now describe an algorithm that satisfies the
properties of Lemma 3.1. During each phase, we
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want to consider all paths with certain detour-spans
(see Definition 2.2). Our general approach is to
label some vertices on π(s, t) as start vertices and
the rest as finish vertices. We will then show how
to find the shortest s − t path whose detour starts
at a start vertex and ends at a finish vertex that
succeeds the start vertex on π(s, t). Then, we split
each phase into a constant number of sub-phases,
and assign labellings to the sub-phases in such a way
that for any detour of the appropriate span, there is
a sub-phase labeling for which this detour starts at
a start vertex and ends at a finish vertex.

Given any labeling, we modify the edges of
G in a way that makes it easier to find the shortest
path whose detour starts at a start vertex and ends
at a finish vertex. We remove the incoming edges
to every start vertex and the outgoing edges from
every finish vertex. We also remove all the edges
on π(s, t) to avoid just using the original shortest
path. Finally, for every start vertex vi we add an
edge from s to vi with weight δ(s, vi). Similarly, for
every finish vertex vj we add an edge from vj to t
with weight δ(vj , t). Note that any s− t path of the
form π(s, vi) ◦D(vi, vj) ◦ π(vj , t) (see Lemma 2.1) is
represented in our new graph as long as vi is a start
vertex and vj is a finish vertex – we take the edge
(s, vi), then detour D(vi, vj), and then (vj , t).

This suggests a very simple algorithm for
computing an R1 with δ2(s, t) ≤ R1 ≤ U1 (see
Definition 3.1). We let all vi for i ≤ q/2 (recall: q is
the number of vertices on π(s, t)) be start vertices
and we let the rest be finish vertices; we then modify
the graph accordingly. It is easy to see that any
detour with span ≥ q/2 must start at a start vertex
and end at a finish vertex. Thus, computing the
shortest distance from s to t in our modified graph
yields the desired R1. The running time is Õ(m) –
the cost of a single run of Dijkstra’s algorithm from s.

Unfortunately, it is not always this easy. Let
us focus on constructing a labeling for phase i – the
phase in which we compute the shortest path with
detour-span in [q/2i, q/2i−1]. We split π(s, t) into
intervals of size q/2i. So the first q/2i vertices go
into the first interval, the next q/2i vertices go into
the second interval, and so on. Let I1, ..., I2i be the
resulting intervals.

We now split the phase into four sub-
phases. In sub-phase 1 we label all the vertices in
I1, I5, I9, I13, ... as start vertices and the rest as finish
vertices; we refer to I1, I5, ... as the start intervals.
More generally, the start intervals of sub-phase j are
Ij , Ij+4, Ij+8, ... (see Figure 2). It is easy to see that
for any vj , vk with k − j ∈ [q/2i, q/2i−1], we have

that vj and vk are either one or two intervals apart.
Either way, in the sub-phase where vj is a start
vertex, vk must be a finish vertex, so every path with
detour-span in [q/2i, q/2i−1] is represented in one of
the four sub-phases.

We now want to compute shortest paths
from s in each sub-phase. Unfortunately, we cannot
naively run Dijkstra from s because our path must
satisfy the requirement that the start vertex precedes
the finish vertex on π(s, t). Running Dijkstra from s
might return a path that takes the edge from s to
a start vertex v90, then takes some path to a finish
vertex v10 and then takes the edge to t. Such a path
is not allowed because it corresponds to a non-simple
path in the original graph: the path from s = v1 to
v90, then back to v10, and then from v10 to vq = t
(see Figure 2).

Before we present our algorithm for computing
shortest paths whose start vertex precedes the finish
vertex on π(s, t), let us summarize what we have so
far

Definition 4.1. Given any labeling L of the vertices
on π(s, t) (into start and finish vertices) let δ(L) be
the length of the shortest path of the form π(s, vi) ◦
D(vi, vj) ◦ π(vj , t), where vi is some start vertex, vj
is some finish vertex, and j > i.

Definition 4.2. Let Li,j be the labeling described
above for the jth sub-phase of phase i. That is, we
split π(s, t) into 2i intervals of size q/2i, and then
label the vertices in every fourth interval (starting
with Ij) as the start vertices, and the rest as finish
vertices. Finally, let L1 be the labeling we described
for computing U1 in phase 1: the first q/2 vertices
are start vertices, and the rest are finish vertices.

Lemma 4.1. Say that we present an algorithm which
for any sub-phase j of any phase i outputs a value
Ri,j with the following properties (for i = 1 the
algorithm only outputs a single value R1).

1. R1 = δ(L1).
2. If δ(Li,j) < Ui−1/(1 + ε′) then Ri,j = δ(Li,j).
3. If δ(Li,j) ≥ Ui−1/(1 + ε′) then our only require-
ment is Ri,j ≥ δ(Li,j).

Then: the values Ri = minj{Ri,j} satisfy the
requirements of Lemma 3.1.

Proof. We already argued that δ(L1) ≤ U1, so if
property 1 is satisfied in this lemma, it is also satisfied
in Lemma 3.1. Similarly, property 3 of Lemma 3.1
is satisfied because every Ri,j is clearly ≥ δ2(s, t).
Finally, to see that property 2 of Lemma 3.1 is
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Figure 2: An example of a labeling for sub-phase j = 2 of phase i = 3, with q = 16. There are 2i = 8
intervals of size q/2i = 2. Every fourth interval is a start interval, starting with the second because we are in
sub-phase 2. Although not shown, there is an edge from s to every start vertex and from every finish vertex
to t. We want to find the shortest path from s to t for which the start vertex precedes the finish vertex on
π(s, t).

satisfied, let us focus on some i for which Ui <
Ui−1/(1 + ε′). It is clear that since Ui < Ui−1 we
must have Wi = Ui (see Definition 3.1). Thus, Ui is
the length of some simple s − t path P that has a
detour-span in [q/2i, q/2i−1].

But we know that every path with such a
detour-span is represented in one of the sub-phases
of phase i. That is, there is some sub-phase k for
which P ’s detour starts at a start vertex of labeling
Li,k and ends at a finish vertex of Li,k. But δ(Li,k) is
the shortest distance with this property so we must
have

Ui−1/(1 + ε′) > Ui = w(P ) ≥ δ(Li,k)

This completes the proof because it shows that Ui <
Ui−1/(1 + ε′) implies δ(Li,k) < Ui−1/(1 + ε′), so by
property 2 of this lemma we have Ri,k = δ(Li,k) ≤ Ui,
so Ri = minj{Ri,j} ≤ Ri,k ≤ Ui.

Note that we have already presented an algorithm for
computing δ(L1) with just a single run of Dijkstra’s
algorithm, so we ignore L1 from now on.

5 Progressive Dijkstra

Our goal is now to present an efficient algorithm
for computing δ(Li,j). We mentioned before that
we cannot handle all start vertices at once because
this might lead to the finish vertex preceding the
start vertex on π(s, t). Our solution is to split the
algorithm into many stages, each of which handles
a single start interval. So in sub-phase 1, stage 1
would find the shortest s − t path whose detour
starts at I1. Then, before proceeding to I5, we would
delete all the vertices on π(s, t) that precede I5 (in
order to to prevent cycles) – stage 2 can now safely
compute the shortest path whose detour starts at
I5. Before proceeding to I9 we would delete all the
vertices before I9, and so on. The problem with

this approach is that it requires multiple runs of
Dijkstra’s algorithm: one for each stage.

We overcome this by using a progressive
version of Dijkstra. The intuitive description is that
when running Dijkstra in stage 3 we do not just
start from scratch: we use the information from
stages 1 and 2. If the distance to some vertex u in
stage 3 is larger than in one of the previous stages
then there is no reason for us to explore u in stage 3.
In fact, since we are looking for an approximation,
we only have to explore u if the distance in stage 3
is significantly smaller than in all previous stages.
This upper bounds the number of times we will have
to explore a vertex u; the distance to u can only
“significantly” decrease so many times.

We now give a formal description. See Figure
3 at the end of this section for pseudocode describing
our entire second-shortest path algorithm. We
focus on finding δ(Li,j) for some arbitrary Li,j .
Let I1, I2, ..., I2i be our intervals of size q/2i, and
recall that in sub-phase j the start intervals are
Ij , Ij+4, Ij+8, .... As before, we delete all edges on
π(s, t), we delete edges entering start vertices or
leaving finish vertices, and we add edges from every
finish vertex to t. But we do not yet add edges from
s to the start vertices since we do not handle all
start vertices at once. Instead, our algorithm runs in
stages: the kth stage handles the kth start interval
(interval I4k+j−4).

Now, we could start each stage from the
source s. But the problem with s is that it serves
two roles – it is our source, but it is also a regular
vertex on π(s, t) that could have up to O(n) edges.
We cannot afford to look at O(n) edges per stage, so
we create a new source s’, leaving s to be treated as
an ordinary vertex on π(s, t). Now, instead of adding
an edge of weight δ(s, vi) from s to every vertex vi
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in the kth start interval, we will add an edge from
s′ to vi of weight δ(s, vi). Note that the weight
will still depend on the original s because even if s′

is our new source, we still care about the distance
from s to t. Intuitively, we can view s and s′ as
basically interchangeable in our algorithm – the only
difference is that there may be some edges (s, u) in
the original graph which we do not replicate for s′.
We now proceed with our description of Progressive
Dijkstra.

Just as in ordinary Dijkstra, we store a value
c(u) for each vertex u – this represents the shortest
distance to u we have found so far. We start with
c(s′) = 0 and c(u) = ∞ for every u 6= s′. Note
that these values are not reset during every stage:
c(u) represents the shortest distance we have found
among all stages so far.

In stage k, we delete all the vertices on
π(s, t) that precede the kth start interval and we
add an edge of weight δ(s, vi) from s′ to every vi
in the kth start interval. We now run a modified
version of Dijkstra from s′. Instead of exploring
every vertex (as in ordinary Dijkstra), we only
explore a vertex u if we changed the value of c(u)
during the current stage. To ensure that we do
not explore u too often, we set a high threshold for
changing c(u). When we relax an edge (u′, u),
we only change c(u) to c(u′) + w(u′, u) if
c(u′) + w(u′, u) < c(u)/(1 + ε′) (ε′ = ε/(2 log q)
– see Lemma 3.1).

Actually, it is a bit more complicated; we do
not always have a high threshold for changing c(u).
When we relax (u′, u), we only use the high-threshold
relax procedure if c(u) has not yet been changed
during this stage. Otherwise, if c(u) has already been
changed in the current stage (i.e. the high threshold
was satisfied earlier in the stage), we use the regular
relax procedure for u; that is, we decrease c(u) if
c(u′) + w(u′, u) < c(u). The reasoning behind this is
that no matter how many times we change c(u) in a
given stage, we explore u at most once in that stage
because Dijkstra only explores each vertex once. So
in any stage, either we do not explore u at all, or
we explore it exactly once, in which case c(u) must
have decreased by at least a (1 + ε′) factor (since the
initial threshold is high).

(Technical note: for edges that enter t we
always use the regular relax procedure. So when
relaxing (u,t), we would decrement c(t) even if
c(u) + w(u, t) = c(t) − 1. We can do this safely
because the whole point of having a high threshold
for changing c(u) was to ensure that we do not
explore u too often. But t is our final destination so

we never explore it anyway, so we can change c(t) as
often as we like).

All in all, each stage runs a modification of
Dijkstra’s algorithm (with a Fibonacci heap – see
[7]), but some vertices are not explored even if they
have the smallest current value; if that value is from
a previous stage then we can ignore it. After the
last stage, we output Ri,j = c(t). Again, Figure 3
contains pseudocode for our whole algorithm.

6 Analysis

6.1 Running Time We start by analyzing the
running time for computing δ(Li,j) using Pro-
gressive Dijkstra (see Definition 4.2). Each ver-
tex u only gets explored in a stage if c(u) de-
creases by at least a (1 + ε′) factor (recall: ε′ =
ε/(2 log q)). Letting C be the largest edge weight in
the graph, and c the smallest positive edge weight,
it is easy to see that each vertex is explored at
most O(log(1+ε′)(nC/c)) = O((1/ε′) log(nC/c)) =
O(ε−1 log(n) log(nC/c)) times. This yields a running
time of Õ(m log(nC/c)) for computing δ(Li,j). There
are O(log n) phases and a constant number of sub-
phases for each, so there are O(log n) labellings Li,j ,
so the total running time is Õ(m log(nC/c)). More
precisely, it is O((m + n log n)ε−1 log2 n log(nC/c)).
Section 7 shows how we can shave off the log(nC/c),
but even what we have now is quite efficient.

6.2 Correctness We now prove that the values
Ri,j satisfy the properties of Lemma 4.1. We focus
on some arbitrary labeling Li,j , and start by noting
that Progressive Dijkstra clearly only considers paths
represented by this labeling – paths whose detour
starts at a start vertex, and ends at a finish vertex
that succeeds the start vertex. Thus, we will always
return Ri,j ≥ δ(Li,j).

Definition 6.1. Given a simple path P containing
vertices x, y with x preceding y, let δ[P ](x, y) be the
distance from x to y along the path P . That is,
δ[P ](x, y) is the length of the subpath of P that goes
from x to y.

Let Pg = π(s, vg)◦D(vg, vh)◦π(vh, t) be the shortest
path in labeling Li,j – that is, w(Pg) = δ(Li,j). Now,
if h− g ≥ q/2i−1 then Pg is a path with detour-span
≥ q/2i−1, so Ui−1 ≤ w(Pg) = δ(Li,j) (see Definition
3.1 for Ui−1), so we are only concerned with property
3 of Lemma 4.1. This is trivially satisfied because as
we discussed, we always return Ri,j ≥ δ(Li,j).

Thus, we assume that h − g < q/2i−1. Now,
let D(vg, vh) = (vg = w1, w2, w3, ..., wr = vh), and
say that vg belongs to the kth start interval of our
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Figure 3: Pseudocode for the algorithm presented in sections 3-5. This does not include the improvement of
section 7.

Algorithm 1: Main(G(V,E))
Output: (1 + ε) approximation to δ2(s, t)
foreach 1 ≤ i ≤ log q do

Ri ← PhaseValue(G(V,E), i)
end
R← mini{Ri};
return R

Algorithm 2: PhaseValue(G(V,E), i)
Output: Phase Value Ri
Break π(s, t) into intervals

I1, ...I2i of length q/2i;
Ei ← E − {edges on π(s, t)};
Ei ← Ei−{edges leaving t} ;
foreach 1 ≤ j ≤ 4 do

Ri,j ← SubSetup(G(V,Ei), i, j)
end
Ri ← minj{Ri,j};
return Ri;

Algorithm 3: SubSetup(G(V,E), i, j)
Output: Ri,j
Comment: this procedure sets up

the labeling Li,j ;
Ej ← E ;
Label Ij , Ij+4, Ij+8, ...

as start intervals ;
Label the rest as

finish intervals;
foreach v in a start interval do

delete all edges (·, v) from Ej
end
foreach v in a finish interval do

1. delete all edges (v, ·) from Ej ;
2. add an edge (v, t) of weight
δ(v, t) to Ej ;

end
Ri,j ← SubValue(G(V,Ej), i, j);
return Ri,j

Algorithm 4: SubValue(G(V,E), i, j)
Output: The value Ri,j
Ek ← E ;
Vk ← V ;
Create new vertex s′ ;
Create a new function c with

c(s′) = 0 and c(v) =∞ ∀v ∈ V
foreach 1 ≤ k ≤ 2i/4 do

I ← k-th start interval ;
foreach v preceding I on π(s, t) do

delete v from Vk
(and all incident edge from Ek)

end
foreach v ∈ I do

1. add edge (s′, v) with weight
δ(s, v) to Ek ;
2. ProgDijk(G(Vk, Ek), s′, c)

end
;

end
return c(t)

Algorithm 5: ProgDijk(G(V,E), s′, c)
Input: c is a function on the vertices
Comment: there is no output

but the function c changes.
Comment: We create an initially

empty Fibonacci Heap H
insert(H, s′, 0)
insert(H, t, c(t))
while H 6= ∅ do

u← Extract-Min(H)
For every edge (u, u′) Relax(u, u′, c,H)

end

Algorithm 6: Relax(u, u′, c,H)
Input: c is a function on the vertices ;
H is a Fibonacci heap of vertices ;
Comment: ε′ = ε/2 log q ;
Comment: there is no output

but c and H change.
if u′ ∈ H and c(u′) > c(u) + w(u, u′) then

c(u′)← c(u) + w(u, u′)
Insert(H,u′, c(u′))

end
if u′ /∈ H and

c(u′) > (1 + ε′)(c(u) + w(u, u′)) then
c(u′)← c(u) + w(u, u′)
Decrease-Key(H,u′, c(u′))

end
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Figure 4: A figure proving the correctness of Progressive Dijkstra. Either we find the best detour for the
labeling (the black detour from vg to vh), or there exists an almost equally good detour with a large span
(the blue path from vf to w′ followed by the black path from w′ to vh).

labeling Li,j . Then, in stage k, as Dijkstra progresses,
we relax the edge (s′, vg), then later (vg, w2), (w2, w3),
and so on until (wr−1, vh), and finally (vh, t). One
option is that we end up exploring every wi. This
would mean that we explore every vertex on the path
Pg, and so clearly end with Ri,j = c(t) = w(Pg) =
δ(Li,j), as desired.

But what if we do not explore all of Pg? Let
w′ be the first vertex on D(vg, vh) for which c(w′)
did not change in this stage. By definition of our
relax procedure, this could only happen if c(w′) ≤
(1+ ε′)δ[Pg](s, w′). But this value of c(w′) must have
been set in a previous stage. In particular, there must
be some s−t path Pf detouring from a start vertex vf
in a previous start interval (see Figure 4), for which

δ[Pf ](s, w′) = c(w′) ≤ (1 + ε′)δ[Pg](s, w′)

But let us now consider the path P = π(s, vf ) ◦
D(vf , vh) ◦ π(vh, t), where D(vf , vh) follows the path
Pf from vf to w′ and then the path Pg from w′ to vh
(see Figure 4). We have

w(P ) = δ[Pf ](s, w′) + δ[Pg](w′, t)
≤ (1 + ε′)δ[Pg](s, w′) + δ[Pg](w′, t)
≤ (1 + ε′)δ[Pg](s, t) = (1 + ε′)δ(Li,j)

But P has a detour-span greater than 3(q/2i) >
q/2i−1 because h − f > g − f , and vg, vf are in
different start intervals, so they are separated by at
least 3 finish intervals of size q/2i. Thus, w(P ) ≥
Ui−1, so we have Ui−1 ≤ w(P ) ≤ (1 + ε′)δ(Li,j), so
we are only concerned with property 3 of Lemma 4.1,
which is trivially satisfied.

All in all, we have shown that either we explore
all of Pg and thus compute an exact value for δ(Li,j),
or we are only concerned with property 3 of Lemma
4.1 (because δ(Li,j) ≥ Ui−1/(1 + ε′)).

7 A Slight Improvement

Although quite efficient, the algorithm pre-
sented above has a running time proportional
to O(log(nC/c)). In this section, we show how to
remove this factor.

In the algorithm above, we only explored a
vertex u when c(u) decreased by at least a (1 + ε′)
multiplicative factor. In this section we replace this
with an additive threshold. That is, we want to
only explore u when c(u) decreases by some additive
factor α.

To see how this works, say that we are in
phase i, and let α be any number in [0, ε′Ui−1/2] (we
set α later). Now, everywhere in our relax procedure
where we required a multiplicative decrease of
at least (1 + ε′), we instead require an additive
decrease of a least α. That is, we only change c(u)
to c(u′) + w(u′, u) if c(u′) + w(u′, u) < c(u) + α
(note: our low-threshold relax procedure, where we
only require that c(u′) + w(u′, u) < c(u), remains
the same). We now show that the requirements of
Lemma 4.1 are still satisfied under this new relax
procedure (note: property 2 of Lemma 4.1 retains its
original form, (1 + ε′) multiplicative factor and all).

We show this by examining the correctness
proof for Progressive Dijkstra. In the original
correctness proof we showed that either we can
directly find the shortest path in a labeling Li,j ,
or we have Ui−1 ≤ (1 + ε′)δ(Li,j). With our
additive relax procedure we have that either
we directly find the shortest path, or we have
Ui−1 ≤ δ(Li,j) + α ≤ δ(Li,j) + ε′Ui−1/2, which
implies Ui−1 · (1 − ε′/2) ≤ δ(Li,j). But some
simple algebra shows that since ε′ is in [0, 1] we
have that (1 − ε′/2) ≥ 1/(1 + ε′) (see footnote
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2), so Ui−1 · (1 − ε′/2) ≤ δ(Li,j) implies that
Ui−1/(1 + ε′) ≤ δ(Li,j). In other words, under this
new relax procedure, we still have that either we can
directly find the shortest path under labeling Li,j or
we have Ui−1/(1 + ε′) ≤ δ(Li,j) – this is precisely
property 2 of Lemma 4.1, so correctness still holds.

The running time analysis is slightly trickier
because we do not actually know Ui−1 (we only know
Ri−1), so it is unclear what value we should set for
α. Say, however, that we knew Ui−1, and that in
particular, we have already found a simple s− t path
(other than π(s, t)) of length Ui−1. Then, we would
set α = ε′Ui−1/2 and add another minor detail to our
relax procedure: we do not explore a vertex u unless
c(u) ≤ Ui−1. This is perfectly safe because we have
no need for distances greater than Ui−1 (because of
our assumption that we have already found a path
of length Ui−1). But u is only explored when c(u)
drops by at least α = ε′Ui−1/2, so every vertex u is
explored at most O(Ui−1/α) = O(2/ε′) = O(log n/ε)
times.

Of course, the above analysis assumed knowl-
edge of Ui−1. But say that instead of knowing
Ui−1 we knew bounds LB,UB with the following
properties:

• We have already found a simple s − t path
(other than π(s, t)) of length ≤ UB.
• LB ≤ Ui−1 and LB ≤ UB.

Then, notice that we can safely not explore a
vertex u unless c(u) < UB (we have no need for
distances ≥ UB since we have already found one).
On the other hand, we can make the additive thresh-
old of our relax procedure α = ε′LB/2 ≤ ε′Ui−1/2.
It is easy to see that every u is explored at
most O(ε−1(UB/LB) log n) times. The follow-
ing lemma shows how we can find valid LB,UB
with UB/LB ≤ 2. This ensures that each vertex
is explored at most O(log n/ε) times (per sub-
phase), which ensures an overall running time of
O((m+ n log n)ε−1 log2 n).

Lemma 7.1. Say that we are in phase i (so we have
already outputted Ri−1, Ri−2, ...R1). Then, we can
safely set UB = mini−1≥j≥1{Rj} and LB = UB/2.

Proof. The setting for UB is clearly valid since every
Rj is the length of some path we have already found.
We must now show that that UB/2 ≤ Ui−1. The
proof is nearly identical to that of Lemma 3.1. In

2We show this by noting that for any x ∈ [0, 1] (1−x/2)(1+

x) ≥ 1. For (1−x/2)(1+x) = 1+x/2−x2/2 ≥ 1+x/2−x/2 = 1

that proof we assumed that we were in phase log q,
but all of the steps can trivially be extended to the
case where i 6= log q. As before, the main idea is that
our multiplicative error increases by at most (1 + ε′)
between phases, and so is bounded by (1 + ε′)i ≤
(1 + ε′)log q ≤ (1 + ε) ≤ 2.

8 Replacement Paths

We now show how to generalize the above algorithm
to find approximate replacement distances for π(s, t).
That is, for every vi on π(s, t) we compute a (1 + ε)
approximation to the length of the shortest path from
s to t avoiding vi. Note that this can trivially be
extended to avoiding the edges of π(s, t) – just add
a vertex to the middle of each edge on π(s, t), and
the path avoiding that vertex is the path avoiding
the edge. The running time of our algorithm is
O((m+ n log n)ε−1 log2 n log(nC/c)), where C is the
largest edge weight on the graph and c is the smallest
weight; unlike in our approximate second shortest
path algorithm, we do not know how to remove the
log(nC/c). It is not hard to extend our algorithm
to return approximate replacement paths (or some
subset of the paths), although this may increase the
running time as it takes Õ(L) time to output a path
with L edges (details omitted).

Our replacement paths algorithm is somewhat
technically complicated, but the concepts used are
nearly identical to those of our second shortest simple
path algorithm.

Definition 8.1. Let π(s, t, vi) be the shortest path
from s to t avoiding vi, and let δ(s, t, vi) be the length
of this path.

For replacement paths, we slightly change the role of
our labelings. We will again group our vertices into
intervals, but now, we no longer restrict our detours
to ending in finish intervals; the detour must start in
a start interval, but in can end in a different start
interval. In terms of how we decide on start and
finish vertices, we use exactly the same labelings Li,j
as before (see Definition 4.2).

Definition 8.2. Given a labeling L (into start and
finish vertices), we say that two start vertices
are in different intervals if they are separated by at
least one finish vertex. The definition is analogous
for finish vertices, and a start and a finish vertex are
always said to be in different intervals. Note that this
definition corresponds to two vertices being in differ-
ent intervals Ik, Ik′ in our labelings Li,j.

Definition 8.3. We say that an s − t path P (s, t)
is represented by a labeling L if the detour of P (s, t)
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starts at a start vertex and ends at a vertex that is not
in the same interval, and that succeeds the start vertex
on π(s, t). Given a vertex vg on π(s, t) we say that
a path P (s, t) is represented by (L, vg) if the detour
D(vf , vh) of P (s, t) satisfies the following properties:
f < g < h (so the path avoids vg), vf is a start vertex,
and vf is in a different interval than both vg and vh.

Definition 8.4. We let δ(L) be the length of the
shortest s − t path that is represented by labeling L.
We let δ(L, vg) be the length of the shortest s− t path
that is represented by (L, vg)

Since we slightly changed the definition of δ(L),
we modify Progressive Dijkstra a bit. The only
difference is that we do not delete the edges entering
start vertices (because our detours can end in start
vertices). As before, in the kth stage, we delete all
vertices before the kth start interval and add an
edge (s′, vi) of weight δ(s, vi) for every vi in the kth
start interval. We also delete all edges entering any
vi in the kth start interval (except (s′, vi)) – this
is to ensure that the detours starting in the kth
start interval do not also end in this interval. We
then run Dijkstra from s′ with our high-threshold
relax procedure – we use the multiplicative (1 + ε′)
threshold (the one used in the original description
of Progressive Dijkstra, before the improvement of
Section 7). The last detail to cover is that we always
use the regular (low-threshold) relax procedure for
edges leaving s′. So at the end of stage k, we always
have c(vi) = δ(s, vi) for every vi in the kth start
interval because when we relax (s′, vi) we necessarily
set c(vi) = δ(s, vi) (of course, we then delete vi in
the next stage).

To find the approximate second shortest simple
path we used progressive Dijkstra to attempt to find
δ(Li,j) for each labeling. In particular, we had a
function c on the vertices where c(u) corresponded
to the shortest distance to u that we had found so
far. We ended by returning c(t), since we only cared
about the distance to t.

But when computing replacement paths, we
do not just care about a single value c(t) because we
want the shortest s− t distances avoiding each of the
q vertices on π(s, t) individually. Our approach is to
note that this information is quite easy to compute
by looking at c(vi) for various vi on π(s, t).

Definition 8.5. Let c[i, j](vg) be the value of c(vg)
after we finish running Progressive Dijkstra on label-
ing Li,j (see Definition 4.2 for Li,j). Let c[i, j, k](vg)
be the value of c(vg) at the end of stage k of Progres-
sive Dijkstra on labeling Li,j.

Definition 8.6. For every labeling Li,j and vertex
vg ∈ π(s, t), we define a function m[i, j](vg) as
follows. Define index k such that the kth start
interval is the last start interval before vg (if vg itself
is in a start interval, pick the previous start interval).
We define

m[i, j](vg) = min
h>g
{c[i, j, k](vh) + δ(vh, t)}

Lemma 8.1. m[i, j](vg) = δ(Li,j , vg) (see Definition
8.4 for δ(Li,j , vg)).

Proof. As in the definition of m[i, j](vg), let the kth
start interval be the last start interval before vg.
Also, Let P (s, t) be the shortest s − t path that is
represented by (Li,j , vg) (so w(P (s, t)) = δ(Li,j , vg)).
Let D(vf , vh) be the detour of P (s, t). By the
definition of represented, we know that vf is a start
vertex that precedes vg on π(s, t), so in particular, vf
is in the kth start interval or in some interval before
it. Thus,

c[i, j, k](vh) ≤ δ(s, vf ) + w(D(vf , vh))

and so

m[i, j](vg) ≤ c[i, j, k](vh) + δ(vh, t) ≤ w(P (s, t))
= δ(Li,j , vg)

On the other hand, we also know that m[i, j](vg) ≥
δ(Li,j , vg) because every term in the min clause of
m[i, j](vg) clearly corresponds to the length of some
s− t path that is represented by (Li,j , vg).

Remark 8.1. Lemma 8.1 sets the foundation for
how we extend our second shortest simple path algo-
rithm to also find replacement paths. Intuitively, just
as previously our final approximation to δ2(s, t) was
mini,j{Ri,j} = mini,j{c[i, j](t)}, our final approxima-
tion to δ(s, t, vg) will be mini,j{m[i, j](vg)}.

Definition 8.7. Given a vertex vg and a detour
D = D(vi, vj) with i < g < j, let the g-span of D
be g − i (note: g − i not j − i). Given any path of
the form in Lemma 2.1 that avoids vg, let its detour-
g-span be the g-span of its detour.

Definition 8.8. Let Wi(vg) be the length of the
shortest s− t path avoiding vg with detour-g-span in
[q/2i, q/2i−1] (as before, q is the number of vertices
on π(s, t)). Let Ui(vg) be the length of the shortest
s− t path avoiding vg with detour-g-span ≥ q/2i (so
Ui(vg) = minj≤i{Wj(vg)}). Note that Ulog q(vg) =
δ(s, t, vg).
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Lemma 8.2. Say that we have an algorithm that for
every 1 ≤ i ≤ log q and every vg ∈ π(s, t) outputs a
value Ri(vg) with the following properties.

1. δ(s, t, vg) ≤ R1(vg) ≤ U1(vg)
2. If Ui(vg) < Ui−1(vg)/(1 + ε′) then
δ(s, t, vg) ≤ Ri(vg) ≤ Ui(vg)
3. Else, Ri(vg) ≥ δ(s, t, vg)

Then: letting R(vg) = mini{Ri(vg)} we have
δ(s, t, vg) ≤ R(vg) ≤ (1 + ε)δ(s, t, vg).

Proof. The proof is exactly the same as for Lemma
3.1

Lemma 8.3. Any s − t path P with detour-g-span
≥ q/2i is represented by (Li,j , vg) for some j, so in
particular, w(P ) ≥ δ(Li,j , vg) (see Definition 8.3 for
represented).

Proof. Let the detour of P be D(vf , vh). We know
that h − f > g − f ≥ q/2i, so since intervals only
have size q/2i, we must have that vf is in a different
interval from both vg and vh. Moreover, we know
that vf is a start vertex in one of the Li,j , so P is
represented in that (Li,j , vg).

Lemma 8.4. Say that we have an algorithm that for
every 1 ≤ i ≤ log q, 1 ≤ j ≤ 4, and every vg ∈ π(s, t)
outputs a value Ri,j(vg) with the following properties
(the algorithm only outputs a single value R1(vg)).

1. R1(vg) = δ(L1, vg)
2. If δ(Li,j , vg) < Ui−1(vg)/(1 + ε′) then
Ri,j(vg) = δ(Li,j , vg)
3. Else, Ri,j(vg) ≥ δ(Li,j , vg)

Then: the values Ri(vg) = minj{Ri,j(vg)} sat-
isfy the properties of Lemma 8.2.

Proof. Since every path with detour-g-span in
[q/2i, q/2i−1] is represented by some (Li,j , vg) (see
Lemma 8.3), there must be some k such that
δ(Li,k, vg) ≤ Ui(vg). The proof now continues ex-
actly as the proof of Lemma 4.1.

(We omit the details but efficiently computing
R1(vg) = δ(L1, vg) for every vg is very easy. Thus,
we only focus on computing appropriate Ri,j values.)

Lemma 8.5. The values Ri,j(vg) = m[i, j](vg) sat-
isfy the properties of Lemma 8.4.

Proof. Properties 1 and 3 are clearly satisfied. To
see that property 2 holds, say that the start interval
right before vg is the kth start interval (if vg itself

is in a start interval, we are focusing on the previous
start interval). Now, let Pf be the shortest s − t
path avoiding vg that is represented by (Li,j , vg) –
that is, w(Pf ) = δ(Li,j , vg). Let Pf = π(s, vf ) ◦
D(vf , vh) ◦ π(vh, t) where f < g < h and vf is in
the kf th start interval with kf ≤ k. Now, if during
the kf th stage of Progressive Dijkstra we end up
exploring all of D(vf , vh), then we have c[i, j, k](vh) ≤
c[i, j, kf ](vh) = δ[Pf ](s, vh) (see Definition 6.1 for
δ[Pf ]). But then note that

m[i, j](vg) ≤ c[i, j, k](vh) + δ(vh, t)
≤ δ[Pf ](s, vh) + δ(vh, t)
= δ[Pf ](s, t) = δ(Li,j , vg)

Thus, Ri,j(vg) = m[i, j](vg) ≤ δ(Li,j , vg), so property
2 is satisfied.

But what if we do not end up exploring all of
D(vf , vh) in stage kf? Then, by the same argument
as in the correctness proof for finding the second
shortest simple path (Section 6.2), there must be
some path Pb = π(s, vb) ◦ D(vb, vh) ◦ π(vh, t) such
that vb is in a start interval kb < kf and

δ(Li,j , vg) ≤ w(Pb) ≤ (1 + ε′)w(Pf )
= (1 + ε′)δ(Li,j , vg)

But since vb is in an earlier start interval than vf
we have f − b ≥ 3q/2i > q/2i−1, so vb has detour-
g-span ≥ q/2i−1, so Ui−1(vg) ≤ w(Pb). Thus,
Ui−1(vg) ≤ (1+ε′)δ(Li,j , vg), so we are not concerned
with property 2 of Lemma 8.4, so we are done because
property 3 is trivially satisfied.

We are basically done. All we have left to show
is how to compute the m[i, j](vg). As before, say
that the last start interval before vg is the kth start
interval. We could, at the end of stage k, just
compute m[i, j](vg) = minh>g{c[i, j, k](vh)+δ(vh, t)}
by looking at every vh. The problem is that this could
take O(n) time, and we cannot afford to spend O(n)
per vertex vg. We fix this by using a simple data
structure to help us compute the min clause quickly.

As we run Progressive Dijkstra on labeling Li,j
the function c changes. We create an array A of
length q where

A[h] = c(vq−h) + δ(vq−h, t)

Note that the entries of this array change as the
function c changes. Our goal is to create a data
structure which given any input g at any time during
our execution of Progressive Dijkstra outputs the
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value

min
h<g

A[h] = minh>q−g{c(vh)+δ(vh, t)} = m[i, j](vq−g)

Then, we can compute m[i, j](vg) by giving input
q − g at the end of the kth stage.

We present a data structure for this prob-
lem that has query and update times of O(log n).
So every time c(vi) changes for any vi we must
spend O(log n) time updating the structure.
But recall that because of our high-threshold
relax procedure, each c(vi) changes at most
O(log(1+ε′)(nC/c)) = O(ε−1 log(n) log(nC/c)) times
(technical note: actually, c(vi) can change many
times because recall that once the high-threshold
relax procedure is satisfied during a stage, we use
the regular relax procedure for the rest of the stage.
So although it is true that c(vi) can only change in
a small number of stages, it can change many times
within a single stage. However, this complication is
trivial to avoid by only updating the array A at the
very end of every stage; we never query A in the
middle of a stage.)

Thus, the total update time for this labeling is
O(nε−1 log2(n) log(nC/c)), which leads to an update
time of O(nε−1 log3(n) log(nC/c)) over all phases,
which is within our desired bounds. It is not hard
to check that the total query time throughout all
phases is only O(n log2 n).

The Data Structure: For every pair of inte-
gers 0 ≤ i ≤ log q and 1 ≤ j ≤ q/2i we let B[i, j]
be the subarray of A between elements A[j2i] and
A[(j + 1)2i]. It is easy to check the following three
properties of the arrays B[i, j]

1. Their total size is O(n log n)
2. Every A[k] belongs to at most two arrays B[i, ·]
(for every i), so it belongs to O(log n) of the B
arrays.
3. For any k, the subarray A[1], A[2], ..., A[k] is the
union of O(log n) of the B[i, j]. This is because there
is clearly some B array which gets us at least half
way to k, the another which covers at least half the
remaining distance, and so on.

We let p[i, j] be the minimum value in B[i, j] –
by property 1, we can find all the p[i, j] in O(n log n)
time. Whenever we change a value in A, we change
O(log n) of the B[i, j] arrays, and we must update
the corresponding p[i, j]. But note that the values
in A only decrease (because c(u) only decreases as
Progressive Dijkstra executes), so we can trivially
maintain p[i, j] in O(1) time per change to B[i, j].

Thus, our update time is O(log n). For the query
we rely on property 3 – to find the minimum value
of Ak = A[1], ..., A[k], we just use the minimum
values in the O(log n) B arrays whose union is Ak.
This completes the description of the data structure,
and hence of our approximate replacement paths
algorithm.

9 Conclusion

We have presented (1 + ε) approximate algorithms
for computing replacement paths and k shortest
simple paths in weighted, directed graphs. The
running times are Õ(mlog(nC/c)/ε) and Õ(mk/ε)
respectively. The main open question is whether we
can find the exact second shortest simple path in
O(n3−δ) time for any constant δ > 0? Alternatively,
can we improve upon the Ω(m

√
n) lower bound [10] in

the path comparison model? Finally, can we improve
upon the Õ(m

√
n) upper bound for finding the exact

second shortest simple path in unweighted graphs?
It would also be nice to remove the dependence on
O(log(nC/c)) in our approximate replacement paths
algorithm.
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