
Improved Distance Sensitivity Oracles Via Random Sampling

Aaron Bernstein∗ David Karger†

Abstract

We present improved oracles for the distance sensitivity

problem. The goal is to preprocess a graph G = (V,E) with

non-negative edge weights to answer queries of the form:

what is the length of the shortest path from x to y that

does not go through some failed vertex or edge f. There

are two state of the art algorithms for this problem. The

first produces an oracle of size Õ(n2) that has an O(1) query

time, and an Õ(mn2) construction time. The second oracle

has size O(n2.5), but the construction time is only Õ(mn1.5).

We present two new oracles that substantially improve upon

both of these results. Both oracles are constructed with

randomized, Monte Carlo algorithms. For directed graphs

with non-negative edge weights, we present an oracle of size

Õ(n2), which has an O(1) query time, and an Õ(n2√m)

construction time. For unweighted graphs, we achieve a

more general construction time of Õ(
√

n3 · APSP + mn),

where APSP is the time it takes to compute all pairs shortest

paths in an aribtrary subgraph of G.

1 Introduction

1.1 The Problem In the distance sensitivity prob-
lem, we wish to construct a data structure (called an
oracle) for a graph G = (V,E) with m edges, n vertices,
and non-negative edge weights. The oracle should sup-
port the following queries:
• Given vertices (x,y,v), return the length of the short-
est path from x to y that avoids v.
• Given vertices (x,y,u,v), return the length of the short-
est path from x to y that avoids edge (u,v).

We may also want to extend the oracle to support
the corresponding path queries. In this paper, we only
show how to answer distance queries avoiding a failed
vertex, although all of our oracles can easily be ex-
tended to answer the other queries, without increasing
the space or time parameters. Path queries take O(L)
time, where L is the length of the output path.

There are two main motivations for this problem.
The first is modeling a network where vertices (or edges)

∗Massachusetts Institute of Technology; Cambridge, MA,
02139; email: bernstei@gmail.com

†Computer Science and Artificial Intelligence Laboratory;

Massachusetts Institute of Technology; Cambridge, MA, 02139;
email: karger@mit.edu

occasionally fail. When a vertex fails, we don’t want to
stall distance queries while we recompute shortest paths.
With a sensitivity oracle, we can continue answering
queries quickly, while constructing a new oracle (for the
graph with a vertex deleted) in the background. Con-
structing a new oracle is rather time consuming, but this
is fine as long as failures are relatively rare. The second
motivation is Vickrey pricing [10]. In Vickrey pricing,
we want to determine how much an edge is worth by
calculating the shortest path from x to y without that
edge. If we want to find Vickrey prices for many paths
at once, then sensitivity oracles are the fastest option.

1.2 Previous Work The naive approach to this
problem is to remove each vertex, one at a time, and
compute all pairs shortest paths on the resulting graphs.
The results are stored in a table of size O(n3). The
construction time is O(n·APSP), where APSP is the
time it takes to compute all pairs shortest paths. The
best non-trivial oracles were developed by Demetrescu
et al [6]. Their first oracle has a construction time of
Õ(mn2), which is no better than that of the naive oracle.
The space, however, is only O(n2log(n)). Their second
oracle only requires Õ(mn1.5) construction time, but its
size is O(n2.5). Both oracles answer queries in O(1)
time.

The main idea behind the first oracle of Demetrescu
et al [6] is that in addition to storing information about
shortest paths that exclude a single vertex, it also
excludes whole sets of vertices at the same time. For
every pair (x,y), it designates O(log(n)) intervals on
the shortest path from x to y, and then computes the
shortest path from x to y that avoids each of these
intervals. It can then use this information to return
the shortest distance avoiding any failed vertex. The
problem with this approach is that it does not reuse
information between pairs: every pair requires at least
one shortest path computation, which is where the
Õ(mn2) construction time comes from.

1.3 Our Contributions Our approach fixes this
problem in two ways. Firstly, we pick intervals that
lie on multiple shortest paths at once, which allows us
to reuse information. It is difficult to deterministically
pick such intervals, so we use random sampling. But

34

more importantly, we show that it is not always neces-
sary to directly exclude the intervals by removing them
from G, and computing shortest paths. There is other
information we can store about these intervals, which
still allows the oracle to answer queries efficiently. This
information is often much easier to compute.

Our approach significantly improves upon the
Õ(mn2) construction time. Note that we construct our
oracles with randomized, Monte Carlo algorithms, so
they work with high probability. For directed graphs
with non-negative edge weights, we present an oracle of
size O(n2log(n)) that has an O(1) query time, and an
O(n2·log(n)·log∗(n)·

√
S(m,n) + n·log2(n)·S(m,n)) con-

struction time. S(m,n) is the time it takes to compute
single-source shortest paths in an arbitrary weighted, di-
rected graph. Dijkstra’s algorithm with Fibonacci heaps
[7] achieves S(m,n) = O(m + nlog(n)). For unweighted
graphs, we achieve a more general construction time
of O(

√
n3 · log2(n) ·APSP + n·log2(n)·S(m,n)), where

APSP is the time it takes to compute all pairs shortest
paths in an arbitrary sub-graph of G.

Both algorithms result in an oracle of size
O(n2log(n)), but one advantage of the Õ(n2

√
m) oracle

is that it only requires O(n2log2(n)) construction space,
while the other oracle requires Õ(min{n3.5/

√
APSP ,

n4/m}). To make for a more intuitive description, we
lead up to our final results with a few less efficient re-
sults.

2 Notation

We use the same notation as Demetrescu et al [6]. Let G
= (V,E) be the graph in question. By (u,v), we denote
the edge from u to v, if it exists. Like other papers in
this field, we assume W.L.O.G that shortest paths are
unique, since we can always add small fractional weights
to break any ties. Let Tx be the shortest path tree in
G rooted at x, and let πx,y be the unique shortest path
from x to y. Let Ĝ be the graph G, only with the edges
reversed. T̂ and π̂ are the equivalents of T and π for Ĝ.
Note that since shortest paths are unique, πx,y contains
the same edges as π̂y,x, and for any v in πx,y, both πx,v

and πv,y are subpaths of πx,y. Let |π| denote the number
of vertices on the path π, let hx,y = |πx,y|, and let dx,y

denote the length of πx,y. Also, let πx,y,S be the shortest
path from x to y that avoids the set of nodes S, and let
dx,y,S , hx,y,S be the weighted and unweighted lengths
of πx,y,S . For simplicity, we write πx,y,{v} as πx,y,v. In
any rooted tree T, we say that a node v is at level L if
the path from the root to v contains L edges. Let Lx(L)
be the set of nodes at level L in Tx, and let Bx(L) be
the ball (i.e. set) of nodes at level ≤ L.

Let a,b be vertices on πx,y. We say that a < b if a
comes before b on πx,y. Assuming a ≤ b, let the interval

Figure 1: A detour avoiding the interval [u,v] on πx,y

[a,b] be the set of vertices v such that a ≤ v ≤ b. We
can now introduce the notion of a detour. As far as
we know, this notion is at the heart of every algorithm
for computing shortest paths with node or link failures.
Say that we are given u ≤ v on πx,y, and that we want
to find πx,y,[u,v]. Intuitively, this new path follows πx,y

for a while, then deviates at some vertex a < u, and
then merges back with πx,y at some vertex b > v (see
figure 1). Thus, we have:

Definition 2.1. Let x ≤ a ≤ b ≤ y be nodes on πx,y.
The path pa,b is a detour if pa,b

⋂
πx,y={a,b}

Lemma 2.1. Any path πx,y,[u,v] can be decomposed into
three subpaths πx,a ◦ pa,b ◦ πb,y, where ◦ is the path
concatenation operator, and pa,b is a detour such that
pa,b = πa,b,[u,v].

Proof. For a formal proof, see claim 1.1 of Demetrescu
et al [6]. As mentioned before, we need to deviate from
πx,y at some vertex a < u, and then merge back at b >
v. Moreover, we will not deviate at both a < u and a <
a’ < u, since it would be better to just take the subpath
πx,a′ (of πx,y), and then deviate from a’. Similarly, we
only merge back at one vertex b > v. Thus, we have
πx,y = πx,a ◦ pa,b ◦ πb,y, and since we want the shortest
detour, we must have pa,b = πa,b,[u,v].

3 An Overview of Existing Techniques

Our oracles use two techniques developed by Deme-
trescu et al [6]. The first technique allows us to store our
distance information more compactly, while the second
one speeds up preprocessing.

3.1 Path Cover One of the main difficulties we have
to overcome is that it might take O(n3) space to naively
store dx,y,v for all triplets (x,y,v). The solution is to
store dx,y,I for various intervals I. We now present a
simple lemma which shows how we can use dx,y,I to
find dx,y,v, for some v ∈ I.

Lemma 3.1. Let x ≤ s < v < t ≤ y be vertices on πx,y,
where v is our failed vertex. Then, dx,y,v = min { dx,s

+ ds,y,v, dx,t,v + dt,y, dx,y,[s,t] }.

35

Proof. Note that this is just a special case of claim 2.2
in [6]. There are three cases to consider: πx,y,v either
diverges from πx,y after s, merges before t, or avoids
the interval [s,t] altogether (see figure 2). Each of these
cases is represented by a term in the min clause.

3.2 Excluding Paths Given some source x, and a
failed node v, we can compute dx,y,v ∀ y ∈ V in Õ(m)
time by doing a single-source shortest path computation
on the graph G - {v}. We can similarly exclude a whole
interval [s,t] in Õ(m) time. But this seems wasteful
because removing an interval might only affect small
portions of Tx, in which case we would like to avoid
examining all of G.

Demetrescu et al [6] formalize this idea. Say that
we are calculating distances from a source x. Let π be
any path in Tx that we want to exclude. Define Tx(π)
to be the subtree of Tx rooted at the first node of π.
Note that removing π only affects vertices in Tx(π),
because if y /∈ Tx(π), then we must have dx,y,π = dx,y.
Thus, instead of calculating shortest paths on G - {π},
we would like to only explore vertices in Tx(π), and
edges incident upon those vertices. This can be done by
slightly modifying Dijkstra’s algorithm (see section 2 of
Demetrescu et al [6]).

Note that for a given vertex x, and any L, all the
vertices at level L in Tx have disjoint subtrees. Thus,
since we only have to examine vertices in the subtree of
a failed node, we can exclude all vertices at level L (one
at a time) in just Õ(m) time (we end up exploring each
vertex at most once). So in Õ(m) time, we can compute
dx,y,v ∀ y ∈ V, v ∈ Lx(L). This proves

Lemma 3.2. Recall that Bx(L) is the set of all nodes
in Tx that are at level ≤ L. Given any source x, and
a length L, we can exclude all of the vertices in Bx(L),
one at a time, in just Õ(mL) time. That is, we can
compute dx,y,v ∀y ∈ V, v ∈ Bx(L).

3.3 Range Maximum Queries The range maxi-
mum data structure is a well known data structure that
is used in many of our algorithms. Given an array A, the
goal is to construct an oracle call RMQ, such that given
a pair of indices (i,j), where i ≤ j, RMQ(i,j) returns the
maximum element in the subarray A[i], A[i+1], A[i+2],
..., A[j]. This oracle can be built with only linear space
and preprocessing time, and it can answer queries in
constant time [2]. Range maximum structures can also
be used to optimally answer LCA (least common ances-
tor) queries on rooted trees. The space and preprocess-
ing is once again linear, and queries can be answered in
constant time ([2],[9]).

4 Admissible Functions

Many of our results depend on the notion of admissible
function, which is new to this paper.

Definition 4.1. A function Fx,y,[s,t] is admissible if ∀
v ∈ [s,t], we have dx,y,[s,t] ≥ Fx,y,[s,t] ≥ dx,y,v.

Definition 4.2. An important example of an admissi-
ble function is Mx,y,[s,t] = maxv∈[s,t] {dx,y,v}.

Mx,y,[s,t] differs from dx,y,[s,t] because instead of remov-
ing the whole interval [s,t], we just remove the vertices
in [s,t] one at a time, and take the longest resulting
distance. Note that if we already know dx,y,v ∀ v ∈
[s,t], then Mx,y,[s,t] only takes O(hs,t) time to compute,
whereas dx,y,[s,t] takes Õ(m) time.

Lemma 4.1. The Triple Path Lemma: Let x ≤ s <
v < t ≤ y be vertices on πx,y (v is the failed vertex),
and let Fx,y,[s,t] be an admissible function. Then, dx,y,v

= min { dx,s + ds,y,v, dx,t,v + dt,y, Fx,y,[s,t]}.

Proof. By definition, since v ∈ [s,t], Fx,y,[s,t] ≥ dx,y,v.
Thus, since the other two terms in the min clause are
also ≥ dx,y,v, we have dx,y,v ≤ min { dx,s + ds,y,v, dx,t,v

+ dt,y, Fx,y,[s,t] }. But we also know that Fx,y,[s,t] ≤
dx,y,[s,t], so min { dx,s + ds,y,v, dx,t,v + dt,y, Fx,y,[s,t] }
≤ min { dx,s + ds,y,v, dx,t,v + dt,y, dx,y,[s,t] } = dx,y,v.

5 Random Sampling and Centers

Definition 5.1. We say that a vertex x covers a vertex
v if we store dx,y,v for every y in Tx(v). That is, x covers
v if we store shortest distances from x avoiding v.

A key element of our approach is that we randomly
sample centers, which store more information than
ordinary vertices. For example, say that centers cover
every vertex. Then, to find dx,y,v, we start by finding
a center to the left of v (on πx,v), and a center to the
right. We can now compute the first two terms of the
triple path lemma because the centers cover v. The
problem is that if centers cover every vertex, then we
can only afford to have a small number of them. This
is fine for paths with many vertices, but if hx,v or hv,y

are small, then we might not be able to find centers to
the right and left of v. Note, however, that we do not
actually need centers that cover every vertex: we just
need to find centers that cover v. So if hx,v is small, it
suffices to find a center on πx,v that covers all vertices in
a small ball around it (figure 2). Thus, we have different
types of centers: the rare ones cover large balls, while
the common ones only cover small balls.

But what about the third term in the triple path
lemma? Since we want to conserve space, we can only

36

Figure 2: Using centers to apply the triple lemma

afford to store Fx,y,I for a small number of intervals
I. This collection of intervals needs to span all of πx,y.
This way, if we want to find dx,y,v, we can just find
an interval I that contains v, and look at Fx,y,I . But
we also need to be able to compute the first two terms
of the triple path lemma, so we need the endpoints of
our intervals to cover all of the vertices in both of their
adjacent intervals. This ensures that if v is in some
interval I, the endpoints of I cover v.

Definition 5.2. A covering chain of πx,y is a sequence
of vertices c1, c2, ..., cj such that [c1, cj] = πx,y, and
ci covers all the vertices in [ci−1, ci], and [ci, ci+1] (see
figure 3). If we store Fx,y,I , for all intervals [ci, ci+1],
then we can use the triple path lemma to efficiently
compute dx,y,v, for any v.

We now describe how to arrange for the existence of
such covering chains. We have log(n) center priorities:
centers with low priority are common, but they only
cover small balls.

Definition 5.3. We say that a vertex is a k-center if it
has priority k. We define Rk to be the set of k-centers.
We say that a k-center c is bigger than some k’-center
if k > k’. We set R1 = V

Definition 5.4. We say that a vertex is a k+-center if
it has priority ≥ k.

Sampling: We obtain Rk by sampling each vertex,
independently, with probability Θ(1/2k).
Center Information: A k-center c covers all vertices
in Tc that are not in the subtree of some k+1-center.
That is, we move down Tc, covering vertices until we
reach a k+1-center.
Covering Chains: Our choice of centers leads to a
very natural small covering chain. Given a path πx,y,

we find a list of O(log(n)) centers in ascending priority.
So c1 is the first center on πx,y, c2 is the first center
bigger than c1, and so on. Once we get to the biggest
center on πx,y, we begin to descend in priority (see
figure 3). It is easy to verify that this is indeed a
covering chain.

We store all this information in O(log(n)) lookup
tables Dk. Dk[c,y,v] stores dc,y,v if c is a k-center that
covers v. We also store D̂k for Ĝ. We now analyze the
size and construction time of Dk

Lemma 5.1. With high probability, any path with at
least 2klog(n) vertices contains some k-center. The
proof can be found in [8].

Lemma 5.2. The following is true with probability
Ω(1): for every center priority k, |Rk| = O(n/2k). The
proof follows from the Chernoff bound [3].

Lemma 5.3. Given a k-center c, and a vertex y, c cov-
ers O(2k) vertices on πc,y in expectation. By linearity of
expectation, there is at least a constant probability that
Dk has size O(n·|Rk|·2k).

Lemma 5.4. With high probability, any k-center c only
has to cover vertices that are at level ≤ O(2klog(n)) in
Tc. This follows from lemma 5.1. By lemma 3.2, this
coverage takes Õ(m2k) time.

Lemmas 5.2 and 5.3 both hold with constant probabil-
ity, so if we just perform O(log(n)) separate sampling
iterations, there is a high probability that both lemmas
will hold in one of the iterations. Since this is true with
high probability, we just assume that the lemmas al-
ways hold. This can be justified with a simple use of
the union bound. Combining these lemmas, we get

37

Figure 3: An example of a covering chain that might be used by our oracles

Theorem 5.1. We can initialize all the Dk tables in
Õ(mn) time, and O(n2log(n)) total space.

6 The General Framework

All of our oracles use the same general framework. In
particular, they store the same lookup tables, and they
have the same query procedure. The only difference lies
in how they compute the lookup table EP. Below is a list
of the tables used in the general framework. We store
these tables for both G and Ĝ. Note that x,y can be
any vertices in V, while i,k represent center priorities.
• D[x,y] stores dx,y

• H[x,y] stores hx,y

• Dk[c,y,v] are the lookup tables from section 5.
• Cr[x,y,i] stores the first i+-center on πx,y (if it exists).
Cr stands for center right.
• Cl[x,y,i] stores the first i+-center on π̂y,x (if it exists).
Cl stands for center left.
• BCP[x,y] stores the priority of the biggest center on
πx,y. BCP stands for biggest center priority.
• EP[x,y,i] can store any value that has the following
property: let cx = Cr[x,y,i]. Let cy be the first center
that is larger than cx on πcx,y. If no such center exists,
let cy = Cl[x,y,i]. If this also does not exist, then
EP[x,y,i] stores nothing. Note that the intervals [cx, cy]
corresponding to EP[x,y,·] are precisely the covering
chain described in section 5. EP[x,y,i] can store any
admissible function Fx,y,[cx,cy]. For example, EP[x,y,i]
might store Mx,y,[cx,cy]. EP stands for exclude path.
Query Procedure: Since we already have a covering
chain for every pair of vertices, the query procedure is

just a simple application of the triple path lemma. In
particular, we can use BCP[x,v] to find i: the largest
center priority on πx,v. Given i, we can use Cr and
Cl to find the appropriate centers cx and cy used in
EP[x,y,i]. Both centers cover v, and EP[x,y,i] excludes
the interval between them, so we can apply the triple
path lemma. Note that the query time is constant. The
full query procedure can be found below.

Algorithm 6.1. Query Procedure
Input: Three vertices (x,y,v)
Output: dx,y,v

If dx,v + dv,y > dx,y

return dx,y

i ← BCP[x,v]
j ← BCP[v,y]
If i > j

break. Compute d̂y,x,v instead.
cx ← Cr[x,y,i]
If i=j

cy ← Cl[x,y,j]
Else

cy ← Cr[v,y,i+1]
d ← min{(dx,cx

+ Di[cx, y, v]), (dcy,y + D̂j [cy, x, v]),
EP[x,y,i]}
return d

Space and Preprocessing: The size of the framework
is trivially O(n2log(n)). Preprocessing is more compli-
cated. We can construct D,H, and Dk in Õ(mn) time.
We can construct Cr, Cl, and BCP in Õ(n2) time by
moving down the shortest path tree of each vertex, and

38

keeping track of the biggest (or the first) center seen
on every path. EP is the hardest matrix to initialize.
In fact, the rest of this paper describes many different
ways of doing so. Note, however, that we have proved:

Theorem 6.1. Any algorithm that constructs EP in
T time produces a distance sensitivity oracle of size
O(n2log(n)), which has an O(1) query time, and a T
+ Õ(mn) construction time.

7 A Simple Approach

A useful property of our general framework is that if
we somehow manage to compute dx,y,v for all triplets
(x,y,v), then in Õ(n3) time, we can compress this in-
formation down to O(n2log(n)) space, instead of O(n3).
All we do is set EP[x,y,i] = Mx,y,[cx,cy]. Since we have
already excluded every vertex, this is easy to compute
by just taking the maximum of at most n terms. The
naive approach to computing dx,y,v (for all triplets)
takes Õ(mn2) time, but we can reduce this to Õ(n3)
by using the dynamic all pairs shortest path algorithm
of Demetrescu and Italiano [4]. There are, however, two
drawbacks to this approach. The first is that it is not
amenable to any improvement. The second is that even
though the size of the oracle is small, the construction
space is still Õ(n3).

8 Constructing EP in Õ(mn1.5) Time

The approach in section 7 works surprisingly well when
the i in EP[x,y,i] is small, so that the whole interval
[cx, cy] is close to x. This is because we can use lemma
3.2 to efficiently exclude a small ball around x. But
what about when i is large? In this case, we are
only considering intervals that end in a large center.
But there are not many large centers, so there are not
many intervals we have to exclude. To prove this more
formally, we consider the two cases separately. Let cx,
cy be the endpoints of the interval corresponding to
EP[x,y,i]. b is a boundary point to be defined later.
Case 1: i > b
In this case, there are not that many possible intervals
[cx, cy]. By definition, cx must be the first i+-center on
the shortest path from x to some other vertex. We call
such centers blocking i+-centers. cy must be a bigger (or
equally big) center in the subtree of cx (in Tx). But note
that the subtrees of all blocking i+-centers are disjoint,
so each of the O(|Rb|) bigger centers is in the subtree of
at most one blocking i+-center. So in working with x,
we only exclude O(|Rb|) intervals. This proves

Lemma 8.1. For all i > b, we can construct EP[·,·,i] in
Õ(mn2/2b) time.

Case 2: i ≤ b
In this case, we can brute force the problem. Since i ≤
b, lemma 5.1 tells us that all vertices in [cx, cy] are at
level ≤ 2blog(n) in Tx. Thus, for every x, we start by
excluding every vertex in Bx(2blog(n)), one at a time.
By Lemma 3.2, this only takes Õ(m2b) time. Hence,
when computing EP[x,y,i] we already know dx,y,v for
every v in [cx,cy], so the natural thing to do is set
EP[x,y,i] = Mx,y,[cx,cy]. This allows us to compute
EP[x,y,i] in just Õ(2b) time by walking down the interval
[cx,cy] ([cx, cy] is small because i is small).

Lemma 8.2. For all i ≤ b, we can construct EP[·,·,i] in
Õ(mn2b) time. By combining this with lemma 8.1, and
setting b =

√
nlog(n), we can construct EP in Õ(mn1.5)

9 Constructing EP in Õ(n3) Time in
Unweighted Graphs

In the previous oracle, we computed EP by doing about√
n shortest path computations per vertex. This is

a good approach when m is small, so shortest path
computations are cheap. When m is big, however, this
becomes expensive. Thus, we show how to use centers
to avoid extra shortest path computations. This oracle
only requires Õ(n2) construction space.

The basic idea behind this oracle is that instead of
just looking at centers on πx,y, we also look at centers
on the optimal path avoiding the failed set in question.
For example, if we know that πx,y,v contains a k-center,
then we know that dx,y,v = minc∈Rk

{ dx,c,v + dc,y,v }.
Thus, our goal is to look at every k-center, and find the
shortest replacement path through that k-center.

Definition 9.1. We say that a path π with h edges is
a k-path if 2k < h ≤ 2k+1.

Given some interval I, say we are told that π′ = πx,y,I

is a k-path. By lemma 5.1, we are guaranteed a k’ = k
- log(log(n)) center on π′. So we only have to examine
every k’-center. But given c ∈ Rk′ , how do we quickly
find the shortest replacement path through c? Well,
the graph is unweighted, so shorter paths must contain
fewer edges. Thus, since hx,c,I and hc,y,I are ≤ 2k+1,
we must have that hc,x and hy,c are ≤ 2k+1.

So by augmenting every k’-center q (in G and
Ĝ) to cover everything in Bq(2k+1), we ensure that c
covers every vertex on π̂c,x = πx,c and on πc,y (see
figure 4). Section 9.1 shows how we can use this to
compute a replacement path (avoiding I) through c.
We omit specific details, but this augmentation does
not significantly decrease efficiency. Every k-center q
still only covers vertices at level ≤ 2q (in Tq), so by
lemma 3.2, we can still construct Dk in Õ(mn) time.

39

Figure 4: Using centers to quickly compute Mc,y,[s,t]

In fact, the only drawback to this augmentation is
that it requires O(n2log2(n)) construction space. The
construction space is slightly worse, but the final oracle
still has size O(n2log(n)).

Note that this augmentation does not ensure that
every k’-center covers x and y. It only ensures that
every k’-center on π′ covers x and y. But this is enough
because since a k’-center on π′ is bound to exist, we only
need to examine k’-centers that cover both x and y.

The final problem is that we assumed that π′ is a
k-path. But this is not such an unjustified assumption,
because k can assume only O(log(n)) values, so we can
check all of them. This yields

Definition 9.2. Let Rx,y
j be the set of all j-centers that

cover both x (in Ĝ) and y.

Key Idea: Let EPk = minc∈Rx,y

k′
{Mx,c,[cx,cy] +

Mc,y,[cx,cy]}. Note that EPk captures the intuition
we just described, so it finds the shortest replacement
path that is a k-path. Thus, we set EP[x,y,i] = mink

{EPk[x,y,i]}. It is not hard to check that this is an
admissible function.

9.1 Computing EPk We now show how given a
k’-center c that covers both x (in Ĝ) and y, we can
compute Mx,c,[cx,cy] + Mc,y,[cx,cy] in O(1) time. This
yields a construction time of Õ(n2|Rk|) for EPk, and
hence Õ(n2Σk|Rk|) = Õ(n3) for EP.

We begin with some initial preprocessing. For every
k’-center q, and any vertex w that is covered by q, we
construct arrays A and B. A[i] is simply the ith vertex
on πq,w, while B[i] = dq,w,A[i] (dq,w,A[i] is available to
us because q covers w). Finally, we build a range
maximum data structure (section 3.3) on B, which we
call RMQq,w. Note that RMQq,w(i,j) = Mq,w,[A[i],A[j]].
Since q covers w, we must have hq,w = O(2k), so
we do O(2k) work for every pair (q,w), so the total
preprocessing time is O(n·2k·|Rk′ |) = Õ(n2).

We are almost done. Since c covers y (it is in Rx,y
k′),

we can use RMQc,y to directly compute Mc,y,[cx,cy]. In
a first attempt, we let s be the index of cx (on πc,y), we
let t be the index of cy, and we compute RMQc,y(s,t).
The only problem is that not all of [cx, cy] is necessarily
contained in πc,y, so the index of cx might not actually
exist. Instead, we want s to the index of c’: the first
node on [cx, cy] that is also on πc,y. Fortunately, s is
just LCA(c, cx) in T̂ y, so we can compute it in constant
time (see section 3.3). Thus, we have Mc,y,[cx,cy] =
max{Mc,y,[cx,c′], Mc,y,[c′,cy]}. The first term of this max
clause is just dc,y,c′ because no vertex before c’ is even
on πc,y. The second term is RMQc,y(s,t). We have
shown how to compute Mc,y,[cx,cy] in constant time. We
compute Mx,c,[cx,cy] in a similar fashion.

10 Computing EP in Õ(n3) time in weighted
graphs

Say we want to compute EP[x,y,i]. Let cx and cy be the
endpoints of the interval corresponding to EP[x,y,i]. Let
π′ = πx,y,[cx,cy]. Assume, for now, that π′ is a k-path
(definition 9.1). The reason we cannot directly use the
previous algorithm is that we have not accounted for the
possibility of long paths with few edges. We still know
that π′ contains some k’-center c (k’ = k - log(log(n))),
and it is still the case that hc,y,[cx,cy] ≤ 2k+1. But this
no longer implies hc,y ≤ 2k+1: πc,y must be shorter than
πc,y,[cx,cy], but it need not contain fewer edges. Thus,
in weighted graphs, c might not cover x and y, so we
cannot efficiently compute Mc,y,[cx,cy] (see figure 5).

In order to fix the above problem, we rely more
heavily on the assumption that π′ is a k-path. Of course,
we do not actually have this knowledge, but we can
afford to check every k. Let c be a k’-center on π′. c
might not cover y, so we artificially force c to pseudo-
cover y, by only covering vertices that are on the shortest
path from c to y that contains at most 2k+1 vertices.

40

Figure 5: An example of our second oracle failing for a
weighted graph

Thus, even if hc,y is big, c only covers 2k+1 vertices.

Definition 10.1. Let πk
x,y be the shortest path from x

to y that contains at most 2k+1 vertices. Let πk
x,y,v be the

shortest path from x to y that avoids v, and contains at
most 2k+1 vertices. Define dk

x,y,v and hk
x,y,v analogously.

At first glance, it seems strange to only cover vertices on
πk

c,y, since πk
c,y has almost no relation to πc,y. Why does

our algorithm still work when we restrict ourselves to a
seemingly random set of vertices? Fortunately, it is not
hard to ensure that EP is an admissible function. To
lower bound EP, we exclude all the vertices on πk

c,y, but
we also max the final result with dk

c,y. This effectively
excludes all of the leftover vertices (on πc,y) that are not
on πk

c,y, since we are taking a path (πk
c,y) that does not

contain any of them. To upper bound EP, we note that
πk

c,y is still shorter than π′ = πx,y,[cx,cy] because π′ is a
k-path, so it also contains at most 2k+1 vertices.

Thus, our goal is to compute dc,y,v for every v
on πk

c,y. Unfortunately, this is too hard to compute
efficiently. Instead, we solve a simpler problem. We
find, for every v on πk

c,y, some value dk−
c,y,v, such that

dk
c,y,v ≥ dk−

c,y,v ≥ dc,y,v. In other words, instead of finding
the optimal replacement path (avoiding v), we just find

some replacement path that is better than the optimal
replacement path that uses at most 2k+1 vertices. This
might make EP[x,y,i] larger, but we still have EP[x,y,i]
≤ dx,y,[cx,cy] because πx,y,[cx,cy] is itself a replacement
path that uses at most 2k+1 vertices

So for each center priority k, we create a table SDk

(SD stands for short distance). This table stores dk−
c,y,v ∀

c ∈ Rk′ , y ∈ V, v ∈ πk
c,y, where k’ = k - log(log(n)). This

is similar to Dk, except that we are excluding v ∈ πk
c,y

instead of v ∈ πc,y, and we are computing dk−
c,y,v instead

of dc,y,v.We show how to construct SDk in section 10.1

Definition 10.2. Let Mk−
x,y,[s,t] = maxv∈[s,t]

⋂
πk

x,y

{dk
x,y, dk−

x,y,v}. This is just like our definition for
Mx,y,[s,t], except that we are avoiding vertices on πk

x,y

one at a time, instead of vertices on πx,y. We also use
dk−

x,y,v (not dx,y,v), and we max with the extra term dk
x,y

to ensure that Mk−
x,y,[s,t] ≥ dk

x,y.

Key Idea: We set EPk[x,y,i] = minc∈Rk′ {Mk−
x,c,[cx,cy]+

Mk−
c,y,[cx,cy]}, where k’ = k - log(log(n)). We then set

EP[x,y,i] = mink{EPk[x, y, i]}. It is not hard to check
that EP is admissible.

10.1 Constructing SDk Recall that SDk stores
dk−

c,y,v ∀ c ∈ Rk′ , y ∈ V, v ∈ πk
c,y, where k’ = k

- log(log(n)). We describe an algorithm EXCLUDE-
SD(c,k), which computes dk−

c,y,v ∀ y ∈ V, v ∈ πk
c,y. First,

we need to compute πk
c,y ∀y ∈ V . This can trivially

be done in O(m2k) time, by using the Bellman-Ford
algorithm, but stopping after 2k+1 iterations [1]. But
what about excluding vertices? Just like in section 3.2,
when we exclude some vertex v, this only affects a small
portion of the vertices in the graph. In particular, by
slightly modifying Dijkstra’s algorithm, we can restrict
our attention to vertices in Tk(v) = {y | v is in πk

c,y

}. We omit the details because the algorithm we use
is very similar to the algorithm EXCLUDE-D used by
Demetrescu et al (the one presented in section 3.2).

Note that for every vertex y, there are at most 2k

vertices v such that y ∈ Tk(v). Thus, we examine
each vertex (and its adjacency list) at most 2k times,
so EXCLUDE-SD(c,k) runs in Õ(m2k) time. This leads
to an Õ(mn) construction time, and an O(|Rk′ | · 2k · n)
= Õ(n2) space requirement for SDk.

10.2 Constructing EPk We use similar techniques
to the ones used in section 9.1, but they are slightly
more complicated. When the graph is unweighted, it is
easy to compute Mc,y,[cx,cy] because the intersection of
[cx, cy] and πc,y is simply a sub-interval of [cx, cy]. This
is because once πc,y intersects [cx, cy] it will continue

41

down that interval, since that is the shortest available
path. But this is certainly not true of πk

c,y. πk
c,y has an

unrelated limitation, so it may actually weave in and
out of [cx, cy], in an entirely unpredictable manner.

We fix this problem by having a more involved pre-
processing stage. Let q be some k’-center, and let w be
any vertex. Recall that k’ = k - log(log(n)). In sec-
tion 9.1, we just stored information about πq,w. The
natural parallel for weighted graphs would be to store
information about πk

q,w. But this is not enough because
this gives us no information about the relation between
πk

q,w, and possible intervals [cx, cy]. Thus, we instead
store an entire copy of T̂w, which we call T̂ q

w. We then
mark every vertex (in T̂ q

w) that is on πk
q,w. We also as-

sign a value to each marked vertex, where the value of
v is dk−

q,w,v. We can do so because this information is
stored in SDk′ . Unmarked vertices do not have a value.

Now, if we want to find Mk−
c,y,[cx,cy], we just need to

find the maximum value along the path [cx, cy] (in the
tree T̂ q

y). This is similar to an ordinary range-maximum
query, except that we are dealing with a tree instead of
an array. Query intervals can start anywhere, but the
end point must be in the subtree of the starting point.
This is because cx is always in the subtree of cy (in T̂ q

y).
It is not hard to construct such a data structure by mim-
icking the techniques used for ordinary range maximum
structures. We omit the details, but the preprocessing
time is O(nlog∗(n)), and queries take O(log∗(n)) time.

We can now compute EPk in the desired time
bound. We create Õ(n·|Rk|) trees, each of which can
be preprocessed in Õ(n) time. This yields a total pre-
processing time of Õ(n2·|Rk|). Once this is done, we
can compute Mk−

x,c,[cx,cy] + Mk−
c,y,[cx,cy] in O(log∗(n)), so

we can construct EPk[x,y,i] in Õ(|Rk|) time.
Note that if we were to actually create (and prepro-

cess) all Õ(n·|Rk|) trees at once, then we would require
a construction space of Õ(n2|Rk|). We fix this problem
by working with one k’-center at a time. That is, for all
pairs (x,y), we start by computing the shortest replace-
ment paths through some k’-center c. This only requires
O(n) trees, and hence Õ(n2) space. We then throw out
the trees, and move onto another center. As we look
at different centers, we store a table of size Õ(n2) that
stores the best replacement paths seen so far

11 Computing EP in Õ(n2
√

m) time

In sections 9.1 and 10.2, we show how to compute a
specific entry EPk[x,y,i] in Õ(|Rk|) time. This is very
expensive for small k. Recall, however, that EPk[x,y,i]
corresponds to the case where the replacement path
dx,y,[cx,cy] is a k-path. Thus, we present an alterna-

tive algorithm which handles small k by efficiently com-
puting replacement paths with few vertices. Combining
this with the algorithm in section 10 (which worked well
for large k), we get a better construction time. In par-
ticular, we introduce a parameter b that serves as our
boundary point. To calculate EPk for k ≥ b, we use
the approach in section 10. For k < b we use this new
approach. Since k < b, we can assume for the rest of
this section that hx,y,[cx,cy] ≤ 2b.

The basic idea behind this approach is that we
generalize the admissible function Mx,y,[cx,cy]. In
Mx,y,[cx,cy], we just excluded every vertex in [cx, cy], and
took the maximum replacement distance. But say that
instead, each vertex v in [cx, cy] had a corresponding
set Sv that contained v. Then, instead of excluding
each vertex, we could exclude the corresponding sets,
and take the maximum replacement distance. This ap-
proach is useful because multiple vertices could corre-
spond to the same set. Thus, although we cannot afford
to exclude every vertex, we can afford to exclude a few
large sets whose union contains V.

Definition 11.1. Given a collection of sets S, let MS
x,y

= maxS∈S{dx,y,S}.

Definition 11.2. A collection of sets S spans an in-
terval I if the union of the sets in S contains I.

Lemma 11.1. If S is a collection of sets that spans
[cx, cy], then MS

x,y ≥ dx,y,v, ∀ v ∈ [cx, cy].

By lemma 11.1, it is tempting to just set EP[x,y,i] =
MS

x,y. The problem is that we need to somehow upper
bound EP. We do this by finding sets S such that
dx,y,S ≤ dx,y,[cx,cy]. This is not hard to do, because
we are assuming that hx,y,[cx,cy] is small (≤ 2b). Thus,
a random set S is likely to not intersect πx,y,[Cx,Cy]. This
would immediately imply that dx,y,S ≤ dx,y,[cx,cy].

Definition 11.3. We say that a collection of sets S
admissibly spans an interval I, if S spans I, and if for
every S ∈ S, we have dx,y,S ≤ dx,y,[cx,cy]. This trivially
yields

Lemma 11.2. If S admissibly spans [cx, cy], then
EP[x,y,i] = MS

x,y is an admissible function.

We have reduced our goal to finding a collection of
sets that admissibly spans [cx, cy]. We want to pick
sets that don’t intersect πx,y,[cx,cy], but since we don’t
even know what vertices lie on πx,y,[cx,cy], the only
thing we can really do is pick random sets. We pick
O(2blog(n)) random sets, each of which is created by
sampling vertices with probability Θ(1/2b). Let RS be
the collection of random sets. Given any collection S

42

⊆ RS, we want to be able to quickly compute MS
x,y,

so we exclude all the sets in RS (one at a time), and
compute all pairs shortest paths each time. This takes
Õ(2b·APSP) time, where APSP is the time it takes to
compute all pairs shortest paths.

Definition 11.4. Let RS(v) be the set of sets in RS
that contain v. By the Chernoff bound [3], there is a
high probability that |RS(v)| ≥ log(n).

Lemma 11.3. Given S ∈ RS, it is easy to check
that there is at least a constant probability that S

⋂
πx,y,[cx,cy] = ∅ (because hx,y,[cx,cy] ≤ 2b). Thus, by the
Chernoff bound [3], if we pick O(log(n)) random sets
from RS, there is a high probability that one of them
does not intersect πx,y,[cx,cy].

So for each vertex v on [cx, cy], we pick O(log(n))
random sets from RS(v), and then take the one that
minimizes dx,y,S . Call this set Sv. By lemma 11.3,
dx,y,Sv

≤ dx,y,[cx,cy] (with high probability). Thus, if we
let S be the collection of sets Sv (v ∈ [cx, cy]), then S
admissibly spans [cx, cy], so by lemma 11.2, we are done.
Finding S takes Õ(hcx,cy

) time, so if we can establish
some upperbound U on hcx,cy

, then we can construct
EPk in Õ(2b·APSP + n2U) time (for k < b). Recall
that for k ≥ b, we use the algorithm in section 10 to
construct EPk in Õ(n3/2b) time.

For unweighted graphs, U is just 2b. This is be-
cause shorter paths must contain fewer edges, so since
hx,y,[cx,cy] ≤ 2b, we must have hcx,cy

≤ hx,y ≤ 2b. Set-
ting b = log(

√
n3/APSP), we get the desired construc-

tion time of Õ(
√

n3 ·APSP +mn). Unfortunately, this
upperbound on hcx,cy does not hold for weighted graphs.
Note, however, that we already have an algorithm for
dealing with long paths (section 8). Thus, we use lemma
8.1 to separately take care for the case when i ≥ log(n)
- b. This takes Õ(mn2b) time, but we can now assume
that i < log(n) - b. Because of how we defined EP, the
fact that i < log(n) - b implies that the interval [cx, cy]
stops once it reaches a (log(n) - b)-center. By lemma
5.1, any shortest path with nlog(n)/2b vertices contains
a (log(n) - b)-center, so hcx,cy ≤ nlog(n)/2b = U. This
yields the desired construction time of Õ(n2

√
m).

Note that if we directly compute all pairs short-
est paths for every set in RS, then we need Õ(n22b)
construction space. But if we are willing to settle for
a construction time of Õ(n2

√
m) (even in unweighted

graphs), we can reduce this to Õ(n2) construction space.
We just work with one vertex at a time, so that we only
have to compute single source shortest paths when ex-
cluding RS.

12 Concluding Remarks

We presented a sampling based approach to distance
sensitivity oracles which allowed us to significantly
decrease construction time, while still preserving a small
query time, and a small space requirement. But there
is no reason to think that our construction times are
optimal; we have made progress towards an Õ(mn)
construction time for undirected graphs, but we have
yet to generalize this to directed graphs. It would also
be nice to construct oracles that can handle more than
one vertex failure at a time. Finally, any non-trivial
lower bounds would be useful.

References

[1] G. Apostolopoulos, R. Gurin, S. Kamat, A. Orda, T.
Przygienda, and D.Williams. QoS routing mechanisms
and OSPF extensions. Internet Engineering Task Force
(IETF), RFC (Experimental) 2676, Aug. 1999.

[2] O.Berkman and U.Vishkin. Recursive star-tree par-
allel data structure. SIAM Journal of Computing,
22(2):221-242, 1993.

[3] H. Chernoff. A measure of the asymptotic efficiency for
tests of a hypothesis based on the sum of observations.
Ann. Math. Stat, 23, 493509, 1952.

[4] C. Demetrescu, and G. Italiano. A new approach to
dynamic all pairs shortest paths. In Journal of the
ACM, 51(6):968-992, 2004.

[5] C. Demetrescu and M. Thorup. Oracles for distances
avoiding a link-failure. In Proceedings of 13th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’92), San Francisco, California, pages 838 843,
2002.

[6] C. Demetrescu, M. Thorup, R. Alam Chowdhury, and
V. Ramachandran. Oracles for distances avoiding a
link-failure.

[7] M.L.Fredman and R.E.Tarjan. Fibonacci heaps and
their use in improved network optimization algorithms.
Journal of the ACM, 34:596-615, 1987.

[8] D. Greene and D. Knuth. Mathematics for the analysis
of algorithms. Birkhauser, Boston, 1982.

[9] D.Harel and R.E.Tarjan. Fast algorithms for finding
nearest common ancestors. SIAM Journal of Comput-
ing, 13(2):338-355, 1984.

[10] J.Hershberger and S.Suri. Vickrey prices and shortest
paths: what is an edge worth?. In Proceedings of
the 42nd IEEE Annual Symposium on Foundations of
Computer Science (FOCS ’01), Las Vegas, Nevada,
pages 129-140, 2001. Erratum in FOCS ’02.

43

