
Incremental Topological Sort and Cycle Detection in Õ(m
√
n)

Expected Total Time

Aaron Bernstein ∗ Shiri Chechik†

Abstract

In the incremental cycle detection problem edges are
inserted to a directed graph (initially empty) and the
algorithm has to report once a directed cycle is formed
in the graph. A closely related problem to the incremen-
tal cycle detection is that of the incremental topological
sort problem, in which edges are inserted to an acyclic
graph and the algorithm has to maintain a valid topo-
logical sort on the vertices at all times.

Both incremental cycle detection and incremental
topological sort have a long history. The state of
the art is a recent breakthrough of Bender, Fineman,
Gilbert and Tarjan [TALG 2016], with two different
algorithms with respective total update times of Õ(n2)
and O(m ·min{m1/2, n2/3}). The two algorithms work
for both incremental cycle detection and incremental
topological sort.

In this paper we introduce a novel technique that
allows us to improve upon the state of the art for a
wide range of graph sparsity. Our algorithms has a
total expected update time of Õ(m

√
n) for both the

incremental cycle detection and the topological sort
problems.

1 Introduction

In dynamic graph algorithms our goal is to maintain
some key functionality of a given graph while an ad-
versary keeps changing the graph. In other words, the
algorithm needs to handle an online sequence of update
operations, where each update operation involves an in-
sertion/deletion of an edge of the graph. We say that a
dynamic algorithm is decremental if it handles only dele-
tions, incremental if handles only insertions and fully
dynamic if it handles both deletions and insertions.

A key objective in dynamic graph algorithms is
to minimize the update time, the time it takes the
algorithm to adapt to a change in the graph. In the

∗Technical University of Berlin, Germany. Supported by the
Einstein Grant at TU Berlin. bernstei@gmail.com
†Tel Aviv University, Israel. Supported by the Israel Sci-

ence Foundation grant No. 1528/15 and the Blavatnik Fund.
shiri.chechik@gmail.com

incremental and the decremental setting, it is often
convenient to consider the total update time, that is, the
aggregate sum of update times over the entire sequence
of insertions or deletions.

Dynamic graph algorithms have been the subject of
an extensive study since the late 70’s with many papers
cover different aspects and problems of this setting.
Many of the very basic dynamic graph algorithms in
undirected graphs admit by-now near optimal solutions
(see e.g. [10, 11, 12, 23, 24, 14, 9]). However, dealing
with the directed case seems more challenging and in
many of the fundamental problems for the directed case
we are still far from seeing the full picture. In this paper
we consider two fundamental dynamic graph problems
on directed graphs, the incremental cycle detection
and the incremental topological sort problems. In the
incremental cycle detection problem we are given a
directed acyclic graph, and edges are added to the graph
one at a time; the algorithm then has to report the first
time a directed cycle is formed in the graph. A closely
related problem to the incremental cycle detection is
that of the incremental topological sort problem. Here
we are given a directed acyclic graph with edges added
one a time, with the additional guarantee that the
graph remains acyclic at all times; the algorithm has
to maintain a valid topological sort on the vertices at
all times.

The problems of detecting a cycle and maintain-
ing topological sort arise naturally in applications for
scheduling tasks where some tasks must perform before
others. Abstractly, the tasks and constraints are repre-
sented by a directed graph, where every node is a task
and an edge between two tasks represents a constraint
that one task must be performed before the other.

In the static regime, for a given graph G, one can
find either a cycle or a topological order in O(n + m)
time 1 [17, 20, 22]. Hence, the naive approach in which
after every update we simply recompute everything
from scratch yields a O(nm+m2) total update time.

The problems of the incremental cycle detection

1As usual, n (respectively, m) is the number of nodes (resp.,
edges) in the graph.

and topological order have been extensively studied in
the last three decades [3, 19, 21, 15, 18, 2, 1, 16, 8,
4, 5, 6]. Marchetti-Spaccamela et al. [19] obtained
algorithms for these problems in O(nm) total update
time. Katriel and Bodlaender [15] later gave algorithms
with improved bounds of O(min{m3/2 log n,m3/2 +
n2 log n}). Afterward, Liu and Chao [18] improved
the bound to O(m3/2 + mn1/2 log n), and Kavitha and
Mathew [16] gave another algorithm with a total update
time bound of O(m3/2+nm1/2 log n). See [8] for further
discussion on these problems.

Recently, Haeupler et al. [8] presented among other
results an elegant algorithm for these problems with
O(m3/2) total update time. In a breakthrough result
Bender, Fineman, Gilbert and Tarjan [5] presented
two different algorithms, with total update time of
O(n2 log n) and O(m · min{m1/2, n2/3}), respectively.
Despite previous attempts, for sparse graphs no better
than O(m3/2) total update time algorithm was found.

In this paper we present a Las Vegas randomized
algorithm that improves upon the state of the art for a
large spectrum of graph sparsity – namely, when m is
ω(n log(n)) and o(n3/2).

Theorem 1.1 There exists an incremental algorithm
for dynamic cycle detection with expected total update
time O(m

√
n log(n)), where m refers to the number of

edges in the final graph.

Theorem 1.2 There is an algorithm for incremen-
tal topological sort with expected total update time
O(m

√
n log(n) + n

√
n log2(n)).

1.1 Preliminaries In the incremental setting, we
start with an empty graph, and the adversary inserts
directed edges one at a time. Let G always refer
to the current version of the graph. The update
sequence terminates once G has a cycle; let Gfinal =
(V,Efinal) refer to the final version of the graph before
the update that led to a cycle, let let m = |Efinal|, and
let n = |V |. We will often speak of the update sequence
up to Gfinal, which excludes the very last update if
it leads a cycle; thus the graph remains acyclic during
the entire update sequence up to Gfinal. Since edges
are only inserted, any topological sort for Gfinal is
also a topological sort for the current graph G. For the
sake of our analysis we fix some topological sort Tfinal
of Gfinal; thus, for every (x, y) ∈ Efinal we have
Tfinal(x) ≤ Tfinal(y). Given sets S, T , recall that
S \ T = {s ∈ S|s /∈ T} and S ⊕ T = (S \ T) ∪ (T \ S).

For any two vertices u, v ∈ V , we say that u is
an ancestor of v if there is a path from u to v in G.
Note that ancestors (and descendants below) are always

defined with respect to the current graph G. We let
A(u) denote the set of ancestors of u in G. Analogously,
if there is a path from u to v then we say that v is
a descendant of u, and we let D(u) denote the set of
descendants of u in G. We say that u is both an ancestor
and a descendant of itself. We say that two vertices u
and v are related if one is the ancestor of the other.

We rely on the following existing result about
incremental reachability in directed acyclic graphs.

Lemma 1.1 [13] Given any vertex v, there exists an
algorithm that maintains A(v) and D(v) in total time
O(m) over the entire sequence of edge insertions.

Note that the average vertex degree in Gfinal is
2m/n. Our analysis requires that no vertex has degree
much larger than this. We will justify this assumption
by showing that for every graph G = (V,E) there is a
graph G′ = (V ′, E′) such that |E′| = O(|E|), V ⊆ V ′

and |V ′| = O(|V |), every vertex v′ ∈ V ′ has degree at
most O(|E′|/|V ′|) = O(|E|/|V |), and for any pair of
vertices u, v ∈ V , there is u − v path in G′ iff there is
such a path in V ; thus, in particular, G′ has a cycle iff G
does. This reduction justifies the following assumption;
the proof of the reduction is deferred to Section A.

Assumption 1.1 We assume for the rest of the paper
that every vertex in the current graph G = (V,E) has
degree O(|E|/|V |) = O(m/n); recall that n = |V | and
m = |Efinal|.

2 High Level Overview of Techniques

We now give a high level overview of our algorithm for
incremental cycle detection; the algorithm for incremen-
tal topological sort uses the same basic ideas, but is a
good deal more involved. Let us consider the insertion
of a new edge (u, v). We want to determine if (u, v)
created a cycle. The trivial algorithm would be to do
a forward search from v, and see if it reaches vertex u,
but this requires O(m) time. We would like to prune
the set of vertices that we have to search from v. Let
us say that two vertices x and y are equivalent if they
are related and A(x) = A(y) and D(x) = D(y); it is
easy to see that if two vertices are on a cycle, then they
are equivalent. Thus, when we insert edge (u, v), our
forward search from v only needs to look at vertices
equivalent to v.

Unfortunately efficiently maintaining equivalent
vertices is at least as hard as finding a cycle. For
this reason we consider a relaxed notion of equiva-
lence. Given any set S, we will say that u and v are
S-equivalent if A(x)

⋂
S = A(y)

⋂
S and D(x)

⋂
S =

D(y)
⋂
S. Now, let us say that we picked S by sam-

pling every vertex in V independently with probability

O(log(n)/
√
n). A standard Chernoff bound argument

will show that with high probability, every vertex x
in a directed acyclic graph is S-equivalent to O(

√
n)

vertices; conversely, if x is found to be S-equivalent to
more than O(

√
n) vertices, then w.h.p the graph con-

tains a cycle through x. We will also show that using
O(m|S|) total update time, at any given time given any
pair (x, y) ∈ V , we can determine in O(1) time whether
x and y are S-equivalent; we do so by maintaining in-
cremental reachability from every vertex in S, which
by Lemma 1.1 takes O(m|S|) = O(m

√
n log(n)) time.

This immediately yields a very simple algorithm with
amortized update time O(m/

√
n) (total update time

O(m2/
√
n)). Namely, when the new edge (u, v) is in-

serted, v only needs to do a forward search amongst all
vertices S-equivalent to v. As indicated above, we can
easily test for each vertex that is encountered in the
forward search if it is S-equivalent to v. If there are
more than O(

√
n) of them, the graph contains a cycle

with high probability. Otherwise, since by assumption
1.1 each vertex has degree O(m/n), the forward search
requires time O((m/n)

√
n) = O(m/

√
n).

To improve this update time, we introduce the
following definition: x and y are sometime-S-equivalent
if x and y are S-equivalent at any point during the
update sequence. Now, although at any one time x
is S-equivalent to at most O(

√
n) vertices, one can

construct an example where some particular vertex x
is sometime-S-equivalent to every other vertex in the
graph. But the main technical lemma of our paper
shows that with high probability, on average a vertex is
sometime-S-equivalent to only O(

√
n log(n)) vertices; or

rather, if this is not the case, then the graph contains
a cycle. This lemma suggest the following algorithm:
each vertex v maintains incremental reachability in the
set of all vertices u that are sometime-S-equivalent to
v; since there are O(

√
n log(n)) of them, this takes

time O((m/n)(
√
n log(n))) per vertex, for a total of

O(m
√
n log(n)) as desired. When we insert an edge

(u, v) we could then detect a cycle by simply checking if
u is a sometime-S-equivalent vertex reachable from v.

Unfortunately, although our main Lemma bounds
the number of sometime-S-equivalent pairs, the proof
is quite complicated and relies on the topological order
Tfinal, which we do not know. For this reason, we are
not able to constructively keep track of all the sometime-
S-equivalent pairs. We overcome this barrier with a
slightly more complicated algorithm, which does not
explicitly keep track of all sometime-S-equivalent pairs,
but is able to charge the work it does to the number of
such pairs.

3 Similarity and Equivalence

Definition 3.1 We say that vertices u and v are τ -
similar in the current graph G if they are related ∧
|A(u)⊕A(v)| ≤ τ ∧ |D(u)⊕D(v)| ≤ τ . We say that u
and v are sometime-τ -similar if u and v are τ -similar
at any point during the entire update sequence up to
Gfinal.

Note that in order to be similar, two vertices u and v
have to related. So for example in a graph with no edges,
although all vertices have identical (empty) reachability
sets, no pair of them τ -similar.

Lemma 3.1 At any point during the update sequence
up to Gfinal, any vertex v is τ -similar to at most 2τ+2
vertices in the current graph G.

Proof. Let Sv be the set of vertices τ -similar to v, and
say for contradiction that |Sv| ≥ 2τ + 3. Then either
|A(v)

⋂
Sv| ≥ τ + 2 or |D(v)

⋂
Sv| ≥ τ + 2; assume

that |D(v)
⋂
Sv| ≥ τ + 2 since the proof for the other

case is analogous. Let u be the vertex in D(v)
⋂
S with

highest Tfinal(u). But now note that D(v) contains all
τ + 2 vertices in |D(v)

⋂
Sv|, which D(u) contains only

one of them (itself), so |D(v) ⊕ D(u)| ≥ τ + 1, which
contradicts u ∈ Sv.

We now turn to bounding sometime τ -similarity.
Although Lemma 3.1 shows that at a given time v can
be 1-similar to at most 4 vertices, there is a simple
example in which a particular vertex v can end up
being sometime-1-similar to every vertex in V . Let
us say that the other vertices (in addition to v) are
(u1, u2, ..., un−1). The update sequence will proceed in
phases, each of which inserts one or two edges. In the
first phase the adversary inserts an edge from u1 to v.
In the second phase it inserts an edge from u1 to u2 and
u2 to v. More generally in the kth phase it inserts an
edge from uk−1 to uk and from uk to v. It is easy to see
that after phase k, v is sometime-1-similar to uk.

But in the example above, although v is sometime-
1-similar to all n vertices, every other vertex is
sometime-1-similar to only 2 vertices. We now argue
that we can bound the total number of sometime-τ -
similar pairs. This is the main Lemma of our paper,
and the proof is quite involved.

Lemma 3.2 For any positive integer τ , the total num-
ber of pairs (u, v) such that u and v are sometime-τ -
similar is O(nτ log(n))

To prove Lemma 3.2 we first introduce some nota-
tions.

Definition 3.2 For any two nodes u and v, we say that
I(u) < I(v) if u appears before v in the final topological
order Tfinal. We define the interval I(u, v) to be the
set of nodes in Tfinal between u and v, including u and
v; I(u, v) is defined to be empty if v appears before u in
Tfinal.

At a high level, in our proof of Lemma 3.2 we
maintain for every node v two sets Â(v) and D̂(v), such
that at all times we have |Â(v)| ≤ 2τ and |D̂(v)| ≤ 2τ
and Â(v) ⊆ A(v) and D̂(v) ⊆ D(v). Some nodes may
be added and removed from the sets Â(v) and D̂(v). We
will show that the number of all the insertions to the sets
Â(v) and D̂(v) for all v ∈ V is O(nτ log n). In addition,
we will show that there are at most O(nτ log n) pairs
(u, v) such that u and v are sometime-τ -similar and yet
u is not added to Â(v) or D̂(v). Together these two
claims imply the lemma.

We next introduce some additional definitions on
the set Â(v) and D̂(v) for v ∈ V .

Definition 3.3 Consider two nodes u and v such that
u is an ancestor of v. We say that a node v has a space
free spot for u if |Â(v)| < 2τ . We say that v has an
asymmetry free spot for u if |Â(v)| = 2τ and Â(v)
contains a node x such that I(x) < I(u) and v /∈ D̂(x).
If v has either a space free spot for u or an asymmetry
free spot for u then we say that v has a free spot for
u.

If v has a free spot for u then we say that we add
u to the free spot in Â(v) if we do the following: if v
has a space free spot for u then we just add u to Â(v);
if v has an asymmetry free spot for u then we add u to
Â(v) and in order to to maintain that |Â(v)| ≤ 2τ we
remove some vertex x from Â(v) with the property that
I(x) < I(u) and v /∈ D̂(x).

Similarly, we say that u has a space free spot for
v if |D̂(u)| < 2τ , and u has an asymmetry free spot
for v if |D̂(u)| = 2τ and D̂(u) contains a node x such
that I(v) < I(x) and u /∈ Â(x). If u has either a space
free spot for v or an asymmetry free spot for v then we
say that u has a free spot for v.

If u has a free spot for v then we say that we add v
to the free spot in D̂(u) if we do the following: if u has
a space free spot for v then we just add v to D̂(u); if u
has an asymmetry free spot for v then we add v to D̂(u)
and remove some vertex x from D̂(u) with the property
that I(v) < I(x) and u /∈ Â(x).

Definition 3.4 Let eA(v) (e stands for extreme) be
the vertex in Â(v) farthest away from v with respect
to the distance in the final topological sorting Tfinal.
Similarly, let eD(v) be the vertex in D̂(v) farthest away

from v. Let IA(v) = I(eA(v), v). Similarly, let ID(v) =
I(v, eD(v)).

Definition 3.5 When a node u becomes an ancestor
of v and |I(u, v)| ≤ |IA(v)|/2, we say that u halves v.
Similarly, when a node u becomes a descendant of v and
|I(v, u)| ≤ |ID(v)|/2, we also say that u halves v.

Defining the sets Â(v) and D̂(v) Let us consider
a specific vertex v. Both Â(v) and D̂(v) are initially
empty. We now define how the sets can change as edges
are added to G. We refer to this as the main set
protocol. The main set protocol will always enforce
that |Â(v)| ≤ 2τ and |D̂(v)| ≤ 2τ .

1. If the insertion of some edge intoG causes some vertex
u to become an ancestor of v and u halves v then u
is added to Â(v). If as a result we have |Â(v)| > 2τ
then eA(v) is removed from Â(v).

2. Similarly, if the insertion of some edge into G causes
some vertex u to become a descendant of v, and u
halves v, then u is added to D̂(v). If as a result we
have |D̂(v)| > 2τ then eD(v) is removed from D̂(v).

3. Say that some insertion in G causes u and v to become
τ -similar and say that u is an ancestor of v. Then if
u has a free spot for v AND v has a free spot for u
then add u to the free spot in Â(v) and add v to the
free spot in D̂(u); recall the definition of adding to a
free spot in Definition 3.3.

Clearly we always have |Â(v)| ≤ 2τ and |D̂(v)| ≤
2τ . We now show that the sets also satisfy the following
invariants

Observation 3.1 The size of Â(v) never decreases,
and an element is removed from Â(v) only when
|Â(v)| = 2τ and a new vertex is inserted into Â(v).
The same holds for D̂(v).

Observation 3.2 Let us say that Â(v) = 2τ and u is
an ancestor of v that is τ -similar to v. Then there are at
least τ vertices in Â(v) that are ancestors of u. This is
because if u and v are τ -similar then by definition their
ancestor sets can differ by at most τ vertices. Similarly,
if D̂(v) = 2τ and u is a descendant of v that is τ -similar
to v then there are at least τ vertices in D̂(v) that are
descendants of u.

Invariant 3.1 (Improving Invariant) Say that a vertex
x is inserted into Â(v) and as a result y is removed from
Â(v). Then x is closer to v in Tfinal than y is. The
same holds for D̂(v).

Proof. We will prove the invariant for Â(v); the proof
for D̂(v) is analogous. There are four reasons a vertex
x can be inserted into Â(v). 1) x is added to a space-
free spot in Â(v) (step 3 of the main set protocol), in
which case no vertex is removed from Â(v). 2) If x
is added to an asymmetry free spot in Â(v) (step 3)
then by definition of adding to an asymmetry free spot
(Definition 3.3), the vertex y removed from Â(v) has
I(y) < I(x). 3) If x is added to Â(v) because it halves
v (step 1) then by definition of halving x is closer to v
then the vertex eA(v) that is removed from Â(v). 4) x
might be added to Â(v) because v halved D̂(x) and x
and v are τ -similar (step 2). But then by Observation
3.2 at least τ of the vertices in Â(v) are further from v
than x is, and this is in particular true of the displaced
vertex eA(v).

We now prove the crucial claims that bound how
often the sets Â(v) and D̂(v) can change.

Claim 3.1 For any given vertex v, the total number of
times that v is halved by some vertex u over the entire
update sequence is at most O(τ log(n)).

Proof. We will show that Â(v) is halved at most
O(τ log(n)) times; the proof for D̂(v) is analogous. Let
t be the first time in the update sequence when |Â(v)| =
2τ . Note that up to time t, |Â(v)| is halved at most 2τ
times, because every vertex that halves Â(v) is inserted
into Â(v) (step 1 of the main set protocol), and by Ob-
servation 3.1 there are exactly 2τ insertions into Â(v) up
to time t (since before time t vertices are never removed
from Â(v)). We now need to bound the number of times
Â(v) is halved after time t. Define a potential function
φ(v) =

∑
w∈Â(v) log(|I(w, v)|). Clearly φ(v) is always

non-negative and at time t we have φ(v) ≤ 2τ log(n).
Moreover, φ(v) only decreases after time t because by
Observation 3.1 we always have |Â(v)| = 2τ after time
t, and by Invariant 3.1 vertices in Â(v) only get closer
to v over time. We now complete the proof by observing
that every time a vertex u halves Â(v) after time t, φ(v)
decreases by at least one. This is because the insertion
of u into Â(v) causes eA(v) to be removed from Â(v),
and by definition of halving |I(u, v)| ≤ |I(eA(v), v)|/2
so log(|I(u, v)|) ≤ log(|I(eA(v), v)|)− 1.

Claim 3.2 The total number of times over the entire
update sequence that a vertex is inserted into some Â(v)
or D̂(v) is at most O(nτ log(n)).

Proof. Recall that a node u is added to Â(v) (or
analogously D̂(v)) because either 1) u halves v or 2) v
halves u and u and v are τ -similar or 3) Â(v) (or D̂(v))
has a free spot for u. By Claim 3.1 the total number

of times that one vertex halves another is O(nτ log n),
so the number of insertions due to cases 1) and 2) is
O(nτ log n).

We are left with bounding the total number of times
any vertex u is added into any Â(v) (or D̂(v)) in a free
spot. There are two cases of free spots: space-free spot
and asymmetry-free spot. The number of insertions
to Â(v) and D̂(v) at space-free spots for a node v is
bounded by 2τ because by Observation 3.1 once the
size of Â(v) (or D̂(v)) reaches 2τ it will no longer have
a space-free spot as its size will always remains 2τ (and
up until that point there are no deletions from Â(v) or
D̂(v)). Thus the total number of insertions into space
free spots is the desired O(nτ).

We now claim that the total number of insertions
into any set Â(v) (or D̂(v)) at an asymmetry free spot
is bounded by twice the total number of halving events,
which by Claim 3.1 is O(nτ log n); this will complete
the proof of the claim.

We use a potential function φ that upper bounds
the total number of asymmetry-free spots at the sets
Â(v) and D̂(v). In particular, let φ(v) be the number
of nodes u such that u ∈ Â(v) and v /∈ D̂(u) plus the
number of nodes u such that u ∈ D̂(v) and v /∈ Â(u).
Let Φ =

∑
v φ(v).

We will show that each halving event adds at most 2
to Φ and that each insertion to some set Â(v) or D̂(v) at
an asymmetry-free spot decreases Φ by at least 1. This
will imply that the total number of insertions to any set
Â(v) or D̂(v) at an asymmetry free spot is bounded by
twice the total number of halves, as desired.

Consider a node u that was added to Â(v) (resp.
to D̂(v)) due to a halving event. We need to show that
Φ increases by at most 2. To see this note that the
only nodes whose potential might have changed by this
insertion is either v itself or the node eA(v) (resp. eD(v))
if it was removed from the set Â(v) (resp. from D̂(v))
as a result of u’s insertion. If v /∈ D̂(u) then a new
asymmetry is created and φ(v) might have increased by
1. If eA(v) (resp. eD(v)) was removed from the set
Â(v) (resp. from D̂(v)) as a result of u’s insertion then
note that now it might be that v ∈ D̂(eA(v)) (resp.
v ∈ Â(eD(v))) but eA(v) /∈ Â(v) (resp. eD(v) /∈ D̂(v))
so the potential of eA(v) (resp. eD(v)) might increase
by 1. So overall Φ increases by at most 2 as a result of
a halve.

We are left to show that Φ decreases by at least one
when a vertex u is added to an asymmetry free spot in
some Â(v) or D̂(v) for a vertex v that is τ -similar to
u. Assume w.l.o.g. that u is an ancestor of v. Recall
that according to Step 3 in our main set protocol we
have that u is added to a free spot in Â(v) AND v is
added to a free spot in D̂(u). We are only concerned

with the case where at least one of these free spots is
an asymmetry free spot so let us say that u is added to
Â(v) in an asymmetry free spot. By definition of adding
to an asymmetry free spot (Definition 3.3), adding u
to Â(v) leads to the removal of a node x from Â(v),
where v /∈ D̂(x). The potential φ(v) thus decreases by
1 because after it is removed from Â(v), x no longer
contributes to φ(v). Also adding u to Â(v) does not
increase φ(v) because in Step 3 of our main set protocol
we also add v to D̂(u), so no asymmetry is created.

Proof of Lemma 3.2
Let us say that a pair (u, v) is a bad pair if u and v

become τ -similar and yet at this time u is not present in
or added to Â(v) or D̂(v) and similarly v is not present
in or added to Â(u) or D̂(u). We will show that there are
at most O(nτ log(n)) such bad pairs (u, v). Combined
with Claim 3.2 this proves the lemma.

We use a charging argument. For every set Â(v) (or
D̂(v)) and every pair of nodes (u, x) such that u and x
are in Â(v) at the same time, v adds a credit of 1/τ to
the pair (u, x).

We now show that the total number of credits given
is O(nτ log(n)). To see this, note that v only gives new
credit when a new vertex u is added to Â(v) or D̂(v).
In particular when some vertex u is added to Â(v) (the
proof is analogous for D̂(v)), v gives 1/τ credits to pair
(u, x) for every x that is in Â(v) at the time that u is
added to Â(v). But since we always have |Â(v)| ≤ 2τ ,
v only gives 2 credits when a vertex u is inserted into
Â(v) or D̂(v). Combined with Claim 3.2 this yields
the desired O(nτ log(n)) bound on the total number of
credit given over the entire sequence of updates.

Now consider a bad pair (u, v). Note that by Step
3 of our main set protocol, the only way that u and
v could fail to be added to each others sets if at least
one has no free spot for the other. Assume w.l.o.g that
u is an ancestor of v and v has no free spot for u.
Since u and v are τ -similar, Observation 3.2 implies
that are at least τ nodes x in Â(v) such that x is
ancestor of u, and in particular, I(x) < I(u). Now
note that since v has no free spot for u, v in particular
has no asymmetry free spot for u, so for all nodes
x′ ∈ Â(v) such that I(x′) < I(u) we have v ∈ D̂(x′). In
particular, for the τ nodes x ∈ Â(v)

⋂
A(u) mentioned

above we have v ∈ D̂(x). We also claim that for each
x ∈ Â(v)

⋂
A(u) we have u ∈ D̂(x). To see this, note

that since (u, v) is a bad pair u does not halve v, as
otherwise by Step 1 of the main set protocol u would
have been inserted into Â(v). Thus by definition of
halving we must have that u is closer to eA(v) than
to v in Tfinal, so since v ∈ D̂(x), we must have that
|I(x, u)| ≤ |I(eA(v), u)| < |I(u, v)| ≤ I(u, eD(x)). It

follows that u halves x so u ∈ D̂(x), as desired. Thus, u
and v are in D̂(x) at the same time and therefore x gives
a credit of 1/τ to the pair (u, v). Recall that there are
τ such nodes x ∈ Â(v)

⋂
A(u) and each gives a credit

of 1/τ to the pair (u, v). Therefore, 1 credit overall is
given for the pair (u, v) and there is enough credit to
pay for this bad pair. Combined with the O(nτ log(n))
bound on the total number of credit, this completes the
proof of the lemma. 2

Lemma 3.2 makes the notion of τ -similarity useful for
our analysis, but it is not very algorithmically useful
because the sets A(v) and D(v) are hard to maintain
efficiently. Our algorithm instead focuses on equivalence
with respect to a set S, defined below. We later
show that if S is sampled uniformly at random with
probability O(log(n)/τ), then S-equivalence is closely
related to τ -similarity.

Definition 3.6 Given a graph G, any set of vertices
S ⊆ V , and any vertex v, let AS(v) = A(v)

⋂
S and

DS(v) = D(v)
⋂
S. We say that two vertices u and v

are S-equivalent if u and v are related ∧ AS(u) = AS(v)
∧ DS(u) = DS(v). We say that two vertices u and v
are sometime-S-equivalent if u and v are S-equivalent
at any point during the update sequence up to Gfinal.

Note that as with similarity, two vertices must be
related to be equivalent.

Lemma 3.3 In any graph G and any S ⊂ V , if u and
v are related ∧ |AS(u)| = |AS(v)| ∧ |DS(u)| = |DS(v)|
then u and v are S-equivalent.

Proof. Let us say w.l.o.g that u ∈ A(v). Then it is easy
to see that A(u) ⊆ A(v) and so AS(u) ⊆ AS(v); thus
|AS(u)| = |AS(v)| implies AS(u) = AS(v). The proof
that DS(u) = DS(v) is analogous.

Lemma 3.4 Given any set S ⊆ V , it is possible to
maintain the following sets in total update time O(m|S|)
over the entire update sequence:

1. The sets A(s) and D(s) for every s ∈ S

2. The sets AS(v) and DS(v) for every v ∈ V

3. A data structure that given any related pair (u, v) an-
swers in O(1) time whether u and v are S-equivalent.

Proof. The first point follows trivially from Lemma
1.1. For the second point, whenever some vertex v is
added to A(s) for some s ∈ S, we add s to DS(v);
similarly when v is added to D(s) we add s to AS(v).
Finally, for the third point, the data structure simply

maintains |AS(v)| and |DS(v)| for every vertex v. Given
any related pair (u, v), the data structure answers that
u and v are S-equivalent if |AS(u)| = |AS(v)| and
|DS(u)| = |DS(v)|; otherwise it answers no. Correctness
follows directly from Lemma 3.3.

Lemma 3.5 For any positive integer τ , Let Sτ ⊆ V
be obtained by independently sampling each vertex in V
with probability 11 log(n)/τ . Then with high probability,
at any time during the update sequence, and for all pairs
u, v ∈ V , if u and v are Sτ -equivalent then u and v are
τ -similar.

Proof. Note that because we assumed a non-adaptive
adversary, the vertices of Sτ are picked completely
independently with probability 11 log(n)/τ from the
perspective of every version of the graph during the
entire update sequence. Now let us focus on a specific
pair u, v during a specific point in the update sequence.
Let us say that u and v are NOT τ -similar. Then
either |A(u) ⊕ A(v)| ≥ τ or |D(u) ⊕ D(v)| ≥ τ ; let
us say, w.l.o.g, that |A(u) ⊕ A(v)| ≥ τ . Then an
easy application of the Chernoff bound shows that with
probability at least 1 − 1/n5, A(u) ⊕ A(v) contains a
vertex in Sτ and so u and v are NOT Sτ -equivalent:
thus, if u and v are Sτ -equivalent then with probability
at least 1− 1/n5 they are τ -similar. Thus by the union
bound this is true for all pairs (u, v) (at most n2) in all
versions of the graph (again at most n2) with probability
1− n4/n5 = 1− 1/n.

Corollary 3.1 With high probability, the total number
of sometime-Sτ -equivalent pairs is O(nτ log(n)).

4 Incremental Cycle Detection

For the rest of this section, we let S∗ ⊆ V be a fixed
set obtained by sampling every v ∈ V with probability
11 log(n)/

√
n. Note that with high probability |S∗| =

O(
√
n log(n)). Since these claims are true with high

probability, we can assume for the rest of this section
that |S∗| = O(

√
n log(n)) and that 3.5 holds.

Observation 4.1 Let us say that a graph G contains a
cycle C. Then any pair of vertices u and v in C have
the same ancestors and descendants so they are certainly
S∗-equivalent.

As discussed in the high level overview (Section 2),
if we could efficiently maintain for each vertex v the
set of all of vertices sometime-S∗-equivalent to v, this
would yield a very simple algorithm for the problem
with the desired O(m

√
n log(n)) total update time; each

vertex v would simply use Lemma 1.1 to maintain

incremental reachability to and from its sometime-S∗-
equivalent vertices. Unfortunately, even though we can
check in O(1) time if any particular pair u, v is S∗-
equivalent, we do not know how to explicitly maintain
all such pairs efficiently. We thus need to use a slightly
more complicated algorithm.

The Algorithm The algorithm maintains all the
information of Lemma 3.4 in time O(m|S∗|) =
O(m

√
n log(n)). It also maintains, for every vertex v, a

set A(v) ⊆ A(v); a vertex u will only be added to A(v) if
u and v are S∗-equivalent at that time, which will keep
the sets A(v) small on average. See Figure 1 below for
a pseudocode description for processing the insertion
of edge (u, v). Note that our algorithm uses an inter-
nal list of vertices denoted to-explore, and that to-
explore.pop-arbitrary-element removes an arbitrary
vertex w from to-explore. Also when the pseudocode
says “return cycle”, the algorithm runs a standard (non-
dynamic) cycle-detection algorithm O(m) time.

We also need to describe the data structure for
A(v). The algorithm only performs insertions and
lookups into each A(v), both of which can be done
in expected constant time with hashing. If we allow
O(n2) update and preprocessing time, then we assign
an integer from 0 to n− 1 to every vertex and initialize
each A(v) as an array of size n; insertions and lookups
can then be done in O(1) worst-case time.

Invariant 4.1 For every vertex v, A(v) ⊆ A(v).

Running Time Analysis Recall that there is
only one edge insertion that creates a cycle; once a
cycle is found, the algorithm ceases. We thus first
bound the time to process the edge (u, v) that creates
a cycle. The execution of the while loop takes O(m)
time because step 5 can be executed at most once for
each vertex w (because after the first time u ∈ A(w)),
so each edge (w, z) is never looked at more than once.
The time to actually compute the cycle is then also
O(m). We now have to analyze the total update time
of all the other edges; that is, the total update time of
the sequence up to Gfinal. Consider the insertion of
some edge (u, v). Recalling that all vertex degrees are
O(m/n) (Assumption 1.1), it is not hard to check that
processing this insertion requires time O(1) + [O(m/n)
times the number of times step 5 was executed]. But
note that every time step 5 is executed, some vertex u
that was not previously in A(w) is added to A(w), for
some pair (u,w) that is S∗-equivalent. By Corollary 3.1
step 5 is thus executed a total of O(n1.5 log(n)) times
over the entire update sequence (with high probability),
leading to total update time O((m/n)n1.5 log(n)) =
O(m

√
n log(n)).

Figure 1: Algorithm for inserting an edge (u, v) to G.

Cycle Detection: Insert (u, v) in G
Initialize to-explore= {v}
While to-explore6= ∅
w = to-explore.pop-arbitrary-element
1. if w = u

return cycle \\ Have found a path v u
2. If w ∈ A(u) \\ Recall that A(u) ⊆ A(u).

return cycle \\ u w u.
3. Else If u ∈ A(w)

do nothing \\ There was already a path u w before the insertion.
4. Else If u and w NOT S∗-Equivalent \\ Lemma 3.4: can check this in O(1) time.

do nothing \\ By observation 4.1 no cycle with w
5. Else \\ u and w are S∗-Equivalent

Add u to A(w) \\ Note: u was not in A(w) before
For each (w, z) ∈ E

Add z to to-explore

Correctness Firstly, note that when we insert
(u, v), we start with only v in to-explore, and we only
explore the outgoing edges of vertices in to-explore,
so if w is explored then w ∈ D(v) before the insertion of
(u, v) and w ∈ D(u) after the insertion. Thus, adding u
to A(w) in step 5 maintains Invariant 4.1.

We now show that when the algorithm performs
“return cycle”, there is indeed a cycle in the graph. In
step 1, if u was popped from to-explore then by the
above paragraph u ∈ D(v), which combined with the
inserted edge (u, v) leads to a cycle u→ v u. In step
2, if we explore a vertex w then w ∈ D(u), so if we also
have w ∈ A(u) ⊆ A(u) then we have a cycle through u
and w.

We now show that if (u, v) is the first edge to create
a cycle in the graph, then the algorithm runs “return
cycle”. To see this, let the cycle be u = x0, v =
x1, x2, x3, ..., xk, u = xk+1. Let xi be the vertex of
highest index such that xi is added to to-explore. If
i = k+1 then we are done because in this case u = xk+1

is added to to-explore so step 1 returns a cycle. We
now consider the case that i < k+1. Since xi+1 was not
added to to-explore, the while loop for xi must have
terminated in steps 1,2,3, or 4. If it terminated in steps
1 or 2, then it returned a cycle and we are done. By
observation 4.1, it could not have terminated with step
4. Thus, the algorithm terminated with step 3, which
means that u ∈ A(xi) ⊆ A(xi) before the insertion of
(u, v). But note that the path xi, xi+1, ..., xk+1 = u
also existed before the insertion of (u, v), so there was
a cycle containing u and xi before the insertion, which
contradicts (u, v) being the first edge to create a cycle.

5 Dynamic Topological Ordering

In this Section we prove Theorem 1.2
We assume for incremental topological sort that

the graph remains acyclic at all times; otherwise, we
can always use Theorem 1.1 to detect a cycle when it
develops. To maintain the vertex ordering, we use a
data structure known as an ordered list. In particular,
this data structure supports the following operations:

1. Insert(X,Y): given a pointer to X, insert element Y
immediately after element X in the ordering.

2. Insert-Before(X,Y): given a pointer to X, insert
element Y immediately before element X.

3. Delete(X): given a pointer to X, delete element X
from the ordering.

4. Order(X,Y): return whether X or Y comes first in
the ordering.

Such a data structure can be implemented in de-
terministic O(1) time per operation (see [7, 25]). We
create an ordered list L which will at all times contain
the vertices v ∈ V as well as O(n log2(n)) dummy el-
ements defined below. We say that x ≺ y if x comes
before y in L. Because L maintains a topological order-
ing, we will always have that if u ∈ A(v) (with u 6= v)
then u ≺ v. We will maintain pointers from each vertex
v ∈ V to its position in L, and vice versa.

High Level Overview The topological sort algo-
rithm is a good deal more technical than the cycle de-
tection one, but the main idea is the same. We start
by sampling a set S of Θ(

√
n log(n)) vertices. Now, the

algorithm always maintains an approximate topological

sort by bucketing the vertices according to |A(v)∩S| and
|D(v) ∩ S|. To establish the approximate position of a
vertex v, consider the value pair (|A(v)∩S|,−|D(v)∩S|):
intuitively, the higher |A(v) ∩ S|, the more ancestors v
has, so the later it should come in the ordering; as a sec-
ondary factor, higher |D(v)∩ S| will indicate an earlier
position in the ordering, since it corresponds to hav-
ing many descendants. Corresponding to this intuition,
we will show a simple proof that given any two ver-
tices v and w, if (|A(v) ∩ S|,−|D(v) ∩ S|) comes before
(|A(w)∩S|,−|D(w)∩S|) in a lexicographical ordering,
then there cannot be a path from w to v, so we can
safely put v before w in our topological ordering.

Our algorithm will create a bucket for each possible
value of (|A(v) ∩ S|,−|D(v) ∩ S|), and will always
maintain the invariant that vertices in smaller-valued
buckets (again ordered lexicographically) come earlier
in the topological sort. It is easy to see that each vertex
can change buckets at most 2|S| = Θ(

√
n log(n)) time,

for a total of O(n1.5 log(n)) inter-bucket moves in total.
Dealing with the incident edges of these moving vertices
will lead to a total update time of O(mn1.5 log(n)).

Bucketing thus offers a very simple solution for
ordering vertices that are already quite different. The
hard part lies in maintaining a correct topological
ordering within each bucket. Here, we rely on our earlier
bounds on the number of similar vertices. In particular,
it is not hard to see that if v and w are related and
in the same bucket, then by Lemma 3.3 they are S-
equivalent. Thus, every time we are forced to rearrange
two vertices vertices v and w within the same bucket,
we are able to charge those changes to the creation of a
new S-equivalent pair. Lemma 3.2 tells us that the total
number of such pairs over the entire update sequence is
only O(n1.5 log(n)), so we have a total of O(n1.5 log(n))
intra-bucket moves, and a corresponding total update
time of O(m

√
n log(n)) to deal with the incident edges.

Formal Description As in Cycle Detection, we
let S∗ be sampled at random from V with probability
11 log(n)/

√
n. Observe that according to the Chernoff

bound, we have that with high probability |S∗| ≤
12 log(n)

√
n; if this is not the case, we simply resample

S∗. We now partition the vertices into buckets, where
the bucket of each vertex can change over time.

Definition 5.1 Let i and j be integers with 0 ≤ i, j ≤
12 log(n)

√
n.

Let bucket Bi,j = {v ∈ V | |AS∗(v)| = i ∧ |DS∗(v)| =
12 log(n)

√
n− j}. We say that Bi,j > Bi′,j′ if i > i′ or

if i = i′ and j > j′. We let B(v) be the bucket belonging
to vertex v.

Observation 5.1 There are O(n log2(n)) buckets in

total and each B(v) changes at most O(
√
n log(n)) times

over the entire sequence of insertions.

Observation 5.2 If u ∈ A(v) then B(u) ≤ B(v). This
follows from the fact that A(u) ⊆ A(v) and D(u) ⊇
D(v).

Observation 5.3 If u and v are related and B(u) =
B(v) then u and v are S∗-equivalent. This follows
directly from Lemma 3.3.

Our algorithm starts with G = ∅ and for every
bucket Bi,j in increasing order it inserts a placeholder
element Pi,j into L. It then inserts all the vertices of
V right after B0,12 log(n)

√
n in an aribtrary order. Our

topological sort T will maintain the following invariant:

Invariant 5.1 Bucket Invariant If Bi,j < Bi′,j′ then
Pi,j will always come before Pi′,j′ in L. If B(v) = Bi,j
then v always comes after Pi,j in L, but before Pi′,j′ ,
where Pi′,j′ is the earliest placeholder after Pi,j.

Note that the Bucket Invariant combined with
Observation 5.2 ensures that if B(u) < B(v) then we
will always have T (u) < T (v), as desired. The more
difficult task will be to ensure that the vertices within
a bucket are also in the correct topological order.

Definition 5.2 Consider the insertion of an edge
(u, v). For any vertex w, define Aold(w), Dold(w) to
be the sets A(w) and D(w) before the insertion of (u, v),
and define Anew(w), Dnew(w) to be the sets after the
insertion. We define Lold to be the ordered list L before
the insertion, and Lnew to be the L after the insertion.
We define Bold(w) and Bnew(w) analogously for all
w ∈ V . Define sets UP = {w ∈ V | Bnew(w) >
Bold(w)} and DOWN = {w ∈ V | Bnew(w) <
Bold(w)}. We say that a vertex w is affected by the
insertion of (u, v) if w ∈ UP ∪DOWN. For any bucket
Bi,j, define UPi,j = {w ∈ UP | Bnew(w) = Bi,j} and
DOWNi,j = {w ∈ DOWN | Bnew(w) = Bi,j}. We
say that bucket Bi,j is affected by the insertion if either
UPi,j or DOWNi,j is non-empty.

The Algorithm As in cycle detection, the al-
gorithm uses Lemma 3.4 to maintain AS(w) and
DS(w) for every vertex w in total time O(m|S∗|) =
O(m

√
n log(n)). This information also clearly allows

the algorithm to maintain each B(w) in the same to-
tal update time. Now, consider the insertion of an
edge (u, v). It is not hard to see that since each ver-
tex w explicitly maintains B(w), we can return UPi,j
and DOWNi,j for each affected bucket Bi,j in total time
equal to the number of vertices w affected by the inser-
tion of (u, v). We now present pseudocode for how the

algorithm handles the insertion of an edge (u, v): see
Figure 2. Note that we assume that Lold was a valid
topological ordering of the graph before (u, v) was in-
serted: the corectness proof will then show that Lnew

is valid as well. to-explore and to-change can both
be implemented as simple lists.

Claim 5.1 The algorithm preserves the Bucket Invari-
ant (5.1).

Proof. After the insertion of (u, v), Part 1 (steps 1,2,3)
move every element to its correct bucket: i.e., if
Bnew(w) = Bi,j , and Bi′,j′ is the bucket right after
Bi,j , then w is moved between the placeholders Pi,j
and Pi′,j′ . Then Part 2 (steps 4,5) only moves vertices
within Bnew(v) and so does not violate the invariant.

Claim 5.2 If for some pair of vertices x, y we have
x ∈ Aold(y) (and so Lold(x) ≺ Lold(y)) then at
the end of steps 1,2,3 we have Lnew(x) ≺ Lnew(y).

Proof. Since x ∈ Aold(y) ⊆ Anew(y), we have
by Observation 5.2 that Bold(x) ≤ Bold(y), and
Bnew(x) ≤ Bnew(y). Now, if Bnew(y) > Bnew(x)
then since by Claim 5.1 steps 1,2,3 restore the Bucket
Invariant, we will have L(x) ≺ L(y) as desired. Now,
if Bnew(y) = Bnew(x) = Bi,j then we consider three
cases.

Case 1: Bold(y) > Bold(x). In this case,
either y ∈ DOWNi,j or x ∈ UPi,j (or both). But if
x ∈ UPi,j then step 2 of the algorithm puts x at the
very beginning of the bucket (right after Pi,j) while if
y ∈ DOWNi,j then step 3 puts y at the very end of the
bucket (right before the next placeholder Pi′,j′), so we
still have L(x) ≺ L(y).

Case 2: Bold(y) = Bold(x) and x, y /∈ UP ∪
DOWN. In this case, x and y both remain in the same
bucket and are simply not affected by steps 1,2,3.

Case 3: Bold(y) = Bold(x) and x, y ∈ UP ∪
DOWN. In this case, x and y are either both in UPi,j
or both in DOWNi,j . Say that they are both in UPi,j .
Then note that step 2 preserves the L-ordering amongst
vertices in UPi,j : it inserts each vertex in UPi,j right
after Pi,j , but since it inserts them in backwards-sorted
order on L, by the time x is inserted right after Pi,j , y
will already have been inserted after Pi,j , and so x will
end up before y in the ordering. An analogous argument
applies to the case where both x and y are in DOWNi,j ,
since step 3 also preserves the L-ordering among vertices
in DOWNi,j .

Claim 5.3 If vertex w is added to to-change in step
4., then the following holds

1. w ∈ Dold(v) and w ∈ Dnew(u)

2. w /∈ Dold(u)

3. u and w are S∗-equivalent after the insertion of (u, v)

Proof. The first part of the claim follows from the fact
that to-change⊆ to-explore, and we initialize to-
explore with v and then only follow outgoing edges.

For the second part, say for contradiction that w ∈
Dold(u). Then we must have Lold(u) ≺ Lold(w).
But then by Claim 5.2, we still have that L(u) ≺ L(w)
after steps 1,2,3 are executed for the insertion of (u, v).
Step 4 only changes L after the entire set to-change
has been constructed, and w will not be added to
to-change because of step 4a, which contradicts the
assumption of the lemma.

The third part of the claim follows from the fact
that w is only added to to-change if Bnew(w) =
Bnew(v) (step 4b.), and we know that Bnew(v) =
Bnew(u) (step 4.), so by Observation 5.3 w and u are
S∗-equivalent.

Running Time Analysis First let us consider the
total running time of Part 1 (steps 1,2,3). For step 1,
Recall that using Lemma 3.4 we can maintain all the
B(w) in total update O(m

√
n log(n)) over all insertions:

since UP and DOWN only consist of vertices for which
B(w) changed, we can clearly maintain all the sets
UP, DOWN, UPi,j DOWNi,j in the same total update
time over all insertions. For steps 2 and 3, since our
ordered list L can compare any two elements in the
list in O(1) time, we can use a comparison sort such
as merge sort. The sorting thus requires O(log(n))
time per element in UP ∪ DOWN; that is O(log(n))
per vertex w such that B(w) changes as a result of
the insertion of (u, v). By Observation 5.1, for any
vertex w, B(w) changes at most O(

√
n log(n)) times

over the entire sequence of insertions. Thus, over the
entire sequence of insertions, O(n1.5 log(n)) elements
appear in UP ∪ DOWN, leading to a total sorting
time of O(n1.5 log2(n)). Similarly, since L implements
Insert(X,Y) and Insert-Before(X,Y) in O(1) time, the
total time to insert elements after Pi,j (step 2) or before
Pi′,j′ (step 3) is the total number of elements to appear
in UP ∪ DOWN over the entire sequence of insertions,
which is O(n1.5 log(n)).

We now consider Part 2 (steps 4 and 5). Note that
other than the initial element v, each element z ∈ to-
explore was put there in step 4c, and in particular can
be associated with some edge (w, z) where w was added
to to-change. Thus, steps 4a and 4b can be charged to
the work in 4c. In step 4c the algorithm spends O(m/n)
time per vertex w added to to-change; recall from
Assumption 1.1 that every vertex w has degree O(m/n).
In step 4d merge sort requires at most O(log(n)) time

Figure 2: Algorithm for inserting an edge (u, v) to G.

Topological Ordering: Insert (u, v) in G
\\ Part 1: first we move elements that changed buckets
1. Find UP, DOWN, and all non-empty sets UPi,j , DOWNi,j

2. For each non-empty set UPi,j
Sort elements in UPi,j in increasing order according to L.

• For each w ∈ UPi,j in decreasing order:
Delete w from its current place in the ordering.
Insert w right after Pi,j in L \\ Maintains sorted order in UPi,j

3. For each non-empty set DOWNi,j

Sort elements in DOWNi,j in increasing order according to L.
• For each w ∈ DOWNi,j in increasing order:

Delete w from its current place in the ordering.
Let Bi′,j′ be the bucket right after Bi,j .
Insert w right before Pi′,j′ in L \\ Maintains sorted order in DOWNi,j .

\\ Part 2: now we fix up the bucket containing u and v.
4. If Bnew(u) = Bnew(v)

Initialize to-explore= {v}
Initialize to-change= ∅ \\ All vertices in to-change will be moved.

• While to-explore 6= ∅
w = to-explore.pop-arbitrary-element
4a. If L(u) ≺ L(w)

do nothing \\ u and w already correctly ordered.
4b. Else If Bnew(w) 6= Bnew(u)

do nothing \\ u and w already correctly ordered by bucket structure
• 4c. Else

Add w to to-change
• for every edge (w, z)

Add z to to-explore
4d. Sort the elements in to-change in increasing order according to the ordering of L.
4e. For each w ∈ to-change in decreasing order insert w right after u in L

\\ Note: Case 4e preserves the L-order of vertices in to-change.
5. Else \\ Bnew(u) 6= Bnew(v)

Do Nothing \\ u and v already correctly ordered by bucketing structure.

per vertex in to-change and in step 4e the algorithm
spends O(1) for each vertex in to-change. Thus, in
total the algorithm spends O(log(n) + d) time for each
vertex added to to-change. First off, note that if w is
added to to-change during the insertion of some (u, v),
then for all future edge insertions we will have w ∈ D(u),
and so by Claim 5.3 (part 2) w will never again be added
to to-change for the insertion of some (u, v′). Thus
the total number of vertices ever added to some to-
change over the entire sequence of insertions is exactly
the number of pairs (u,w) such that w is added to
to-change during the course of some insertion (u, v).
But note that for any such pair (u,w), we have by
Claim 5.3 that u and w are sometime-S∗-equivalent,
and so by Corollary 3.1 the total number of such pairs
is O(n1.5 log(n)) with high probability. Thus the total
work done in step 4 is O((log(n)+(m/n))n1.5 log(n)) =
O(m

√
n log(n) + n

√
n log2(n)).

Correctness Analysis Consider the insertion of
some edge (u, v). We assume that L was a valid
topological ordering before the insertion, and want
to show that it is also a valid topological ordering
afterwards. Consider any pair of vertices (x, y). We
want to show that if x ∈ Anew(y) then Lnew(x) ≺
Lnew(y). Note that if Bnew(x) 6= Bnew(y) then they
will be correctly ordered by the Bucket Invariant, which
by Claim 5.1 is preserved by the algorithm. We can thus
assume for the rest of the proof Bnew(x) = Bnew(y).
We now consider two main cases

Case 1: x ∈ Aold(y). In this case we had

Lold(x) ≺ Lold(y).

• Case 1a: Bnew(u) 6= Bnew(v). In this case step 4
will simply not be executed; on the other hand, Claim
5.2 guarantees that at the end of steps 1,2,3 we have
Lnew(x) ≺ Lnew(y), as desired.

• Case 1b: Bnew(x) = Bnew(y) 6= Bnew(v). In this
case neither x nor y will end up in to-change (step
4b), so their position in L will be unaffected by step
4; on the other hand, Claim 5.2 guarantees that at
the end of steps 1,2,3 we have Lnew(x) ≺ Lnew(y),
as desired.

• Case 1c:
Bnew(x) = Bnew(y) = Bnew(u) = Bnew(v).

Note that x ends up in to-change if and only if
x ∈ Dold(v) and Lold(x) ≺ Lold(u), and that y
is added to to-change if and only if y ∈ Dold(v)
and Lold(y) ≺ Lold(u).

– Case 1c.1:
Neither x nor y end up in to-change. In this

case by Claim 5.2 we have Lnew(x) ≺
Lnew(y).

– Case 1c.2:
y is added to to-change but x is not. In this

case, since y ends up in to-change we had
Lold(y) ≺ Lold(u), and so by the assumption
of Case 1, Lold(x) ≺ Lold(y) ≺ Lold(u). But
then step 4e moves y after u in the ordering,
whereas the position of x stays the same (x is
not in to-change), so Lnew(x) ≺ Lnew(u) ≺
Lnew(y), as desired.

– Case 1b.3:
x is added to to-change but y is not. Note

that since x is added to to-change we must
have x ∈ Dold(v), so since y ∈ Dold(x) we
have y ∈ Dold(v). Thus the only possible
reason y is not added to to-change is that
Lold(u) ≺ Lold(y). But since x is in to-
change it is added directly after u in L, so
it is inserted between u and y and we have
Lnew(x) ≺ Lnew(y).

– Case 1b.4:
Both x and y are added to to-change. In

this case Lnew(x) ≺ Lnew(y) because step
4e preserves the Lold-order of verices in
to-change. To see this, note that the vertices
of to-change are inserted directly after u in
decreasing order of Lold, so by the time x
is inserted into L directly after u, y will have
already been inserted after u, so x will end up
between u and y in Lnew.

Case 2: x /∈ Aold(y). The only way that the in-

sertion of the edge (u, v) could lead to x ∈ Anew(y)
but x /∈ Aold(y) is if the graph G contains a path
x u → v y; that is, if x ∈ Aold(u) ⊆ Anew(u)
and y ∈ Dold(v) ⊆ Dnew(v). Now, note that x is not
added to to-change because otherwise by Claim 5.3
we would have x ∈ Dold(v) and there would be a cy-
cle u → v x u. Thus, since Lold(x) ≺ Lold(u)
(because x ∈ Aold(u)) we must have by Claim 5.2 that
Lnew(x) ≺ Lnew(u).

• Case 2a: Bnew(u) 6= Bnew(v). In this case, since

u ∈ Anew(v), Observation 5.2 implies that
Bnew(u) < Bnew(v). But since x ∈ A(u) we
have Bnew(x) ≤ Bnew(u) and since y ∈ Dnew(v)
we have Bnew(v) ≤ Bnew(y). Thus Bnew(x) <
Bnew(y), so since the algorithm preserves the Bucket
Invariant in L (Claim 5.1) we have Lnew(x) ≺
Lnew(y), as desired.

• Case 2b:
Bnew(u) = Bnew(v)
and y is not added to to-change. In this case we

must have had Lold(u) ≺ Lold(y), and so
Lnew(u) ≺ Lnew(y) (since neither u nor y end
up in to-change); thus Lnew(x) ≺ Lnew(u) ≺
Lnew(y) so we are done.

• Case 2c:
Bnew(u) = Bnew(v)
and y is added to to-change. In this case step 4e

of the algorithm ensures that y is placed after u
in L, so Lnew(u) ≺ Lnew(y) so we again have
Lnew(x) ≺ Lnew(u) ≺ Lnew(y).

Appendix

A Justification of Assumption 1.1

In what follows we show a reduction from the general
case (vertices have arbitrary degree) to the bounded-
degree case in the assumption.

Let d = d|E|/|V |e. In the static setting the
assumption can be easily obtained by replacing all the
outgoing edges from v by a balanced d-tree (a balanced
tree with degree d where v is the root of the tree and all
edges of the tree are directed from the root) where each
leaf in this tree is “responsible” for d of the outgoing
edges of v, that is, each leaf has d outgoing edges to d
(different) neighbors of v. A similar process is done for
the incoming edges of v for every node v ∈ V . It is not
hard to verify that the number of new nodes created is
proportional to the number of edges divided by d, that
is, the number of new nodes is O(m/d) = O(n). In
addition, every two original nodes u and v that have
a directed path in G, also have a directed path in the
modified graph.

In the dynamic setting we use a very similar reduc-
tion. There are two slight technical issues. The first is
that since m refers to the number of edges in the final
graph, we do not know d = dm/ne in advance. The
second is that even if we did know d in advance, for any
given vertex v we do not know the final in-degree and
out-degree of v in advance, so we cannot create the in
d-tree and out d-tree of v in advance. For example, if
v has d5 neighbors then we use a different tree than if
it has d6. We overcome this, by using a slightly differ-
ent tree that is easier to construct dynamically as the
degree gets larger but has similar properties to the bal-
anced d-trees.

Let us for now assume that we know d in advance.
The only issue left is thus that we do not know in- and
out-degrees in advance. We explain the dynamic process
for the outgoing edges for a node v ∈ V . A similar
process is done for the incoming edges to v and for every
node v ∈ V . For every d outgoing edges added from v
for the first d2 outgoing edges, add a new node v′ and
connect it by an edge from v and add these outgoing d

edges from v′ rather than from v. That is, when a first
edge from v is added, we add a new node v′, connect it
from v by an edge and add the new edge from v′ rather
than from v. All the next d− 1 edges added from v are
added from v′ instead. After d edges are added to v
we create a new node v′2for the next d edges and so on.
After d2 edges, we can no longer continue in this fashion
because the degree of v would get too big. We thus add
an additional node v′′ and connect it by an edge from v
(this is the last outgoing edge we will add from from v).
For the node v′′ we add d additional nodes and connect
edges from v′′ to them; each such node will take care of
d2 additional edge insertions from v (in exactly similar
way we did for v, i.e., for every d edges add another node
and connect and so on). This takes care of the next d3

edge insertions from v. We now add an additional node
v′′′ with an edge from v′′ (the last one from v′′) and
create new d2 nodes, connect the first d of these nodes
by an edge from v′′′ and for each such node connect it to
additional d nodes where each such node will take care
of d edge insertions from v. This will take care of next
d4 edge insertions from v. We continue with this process
by adding now new d3 new nodes and so on. It is not
hard to verify that this process satisfy all requirements.

We now consider the case where we do not know
d = dm/ne in advance. Let m∗ refer to the current
number of edges in the graph and let d∗ = dm∗/ne.
(Recall that we assume a model where all the vertices
are given in advance. If do not know the number of
vertices n either a slightly more complicated doubling
argument can be used.) Note that we always have
d∗ ≤ d. We now use a standard doubling argument.
Every time d∗ increases to 2i for some i we register this
change. Let d∗O be the old value of d∗ (O for old), and
let d∗N be the new value; note that d∗N = 2d∗O. Now,
as more edges are inserted, we slowly turn the old d∗O-
tree into a new d∗N -tree. We do this bottom up. Each
internal leaf in the d∗O tree now has allowed degree d∗N ,
so the first bunch of insertions can simply be added to
the existing leaves. We then move one layer up. The
vertices at height 1 currently have at most d∗O leaves, but
are now allowed d∗N . The next new bunch of insertions
can thus be handled by creating a new internal leaf from
the vertices of height 1, until all vertices at height 1 have
d∗N internal leaves. We then move up to height 2 and
so on. It is not hard to check that the new tree satisfies
all requirements.

Acknowledgement: We are deeply indebted to Haim
Kaplan for many discussions on this topic.

References

[1] Deepak Ajwani and Tobias Friedrich. Average-case
analysis of incremental topological ordering. Discrete
Applied Mathematics, 158(4):240 – 250, 2010. 6th
Cologne/Twente Workshop on Graphs and Combina-
torial Optimization (CTW 2007).

[2] Deepak Ajwani, Tobias Friedrich, and Ulrich Meyer.
An o(n2.75) algorithm for incremental topological or-
dering. ACM Trans. Algorithms, 4(4):39:1–39:14, Au-
gust 2008.

[3] Bowen Alpern, Roger Hoover, Barry K. Rosen, Peter F.
Sweeney, and F. Kenneth Zadeck. Incremental evalu-
ation of computational circuits. In Proceedings of the
First Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’90, pages 32–42, Philadelphia, PA,
USA, 1990. Society for Industrial and Applied Mathe-
matics.

[4] Michael A. Bender, Jeremy T. Fineman, and Seth
Gilbert. A new approach to incremental topological or-
dering. In Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’09,
pages 1108–1115, Philadelphia, PA, USA, 2009. Society
for Industrial and Applied Mathematics.

[5] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert,
and Robert E. Tarjan. A new approach to incremental
cycle detection and related problems. ACM Trans.
Algorithms, 12(2):14:1–14:22, December 2015.

[6] Edith Cohen, Amos Fiat, Haim Kaplan, and Liam
Roditty. A labeling approach to incremental cycle
detection. CoRR, abs/1310.8381, 2013.

[7] P. Dietz and D. Sleator. Two algorithms for maintain-
ing order in a list. In Proceedings of the Nineteenth An-
nual ACM Symposium on Theory of Computing, STOC
’87, pages 365–372, New York, NY, USA, 1987. ACM.

[8] Bernhard Haeupler, Telikepalli Kavitha, Rogers
Mathew, Siddhartha Sen, and Robert E. Tarjan. In-
cremental cycle detection, topological ordering, and
strong component maintenance. ACM Trans. Algo-
rithms, 8(1):3:1–3:33, January 2012.

[9] Monika Henzinger, Sebastian Krinninger, and
Danupon Nanongkai. Decremental single-source
shortest paths on undirected graphs in near-linear
total update time. In Proceedings of the 55th Annual
Symposium on Foundations of Computer Science,
FOCS, pages 146–155, 2014.

[10] Monika Rauch Henzinger and Mikkel Thorup. Sam-
pling to provide or to bound: With applications to
fully dynamic graph algorithms. Random Struct. Al-
gorithms, 11(4):369–379, 1997.

[11] Jacob Holm, Kristian de Lichtenberg, and Mikkel
Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. J. ACM, 48(4):723–760,
2001.

[12] Jacob Holm, Eva Rotenberg, and Christian Wulff-
Nilsen. Faster fully-dynamic minimum spanning forest.
In Proc. of 23rd ESA, pages 742–753, 2015.

[13] Giuseppe F. Italiano. Amortized efficiency of a path
retrieval data structure. Theor. Comput. Sci., 48(2-
3):273–281, 1986.

[14] Bruce M. Kapron, Valerie King, and Ben Mountjoy.
Dynamic graph connectivity in polylogarithmic worst
case time. In Proc. of 24th SODA, pages 1131–1142,
2013.

[15] Irit Katriel and Hans L. Bodlaender. Online topolog-
ical ordering. ACM Trans. Algorithms, 2(3):364–379,
July 2006.

[16] Telikepalli Kavitha and Rogers Mathew. Faster al-
gorithms for online topological ordering. CoRR,
abs/0711.0251, 2007.

[17] D.E. Knuth. The Art of Computer Programming:
Fundamental algorithms. Addison-Wesley series in
computer science and information processing. Addison-
Wesley Publishing Company, 1973.

[18] Hsiao-Fei Liu and Kun-Mao Chao. A tight analysis of
the katrielbodlaender algorithm for online topological
ordering. Theoretical Computer Science, 389(1):182 –
189, 2007.

[19] Alberto Marchetti-Spaccamela, Umberto Nanni, and
Hans Rohnert. Maintaining a topological order un-
der edge insertions. Information Processing Letters,
59(1):53 – 58, 1996.

[20] University of Newcastle upon Tyne. Computing Labo-
ratory, D.E. Knuth, and J.L. . A structured program
to generate all topological sorting arrangements. Tech-
nical report series. University of Newcastle upon Tyne,
1974.

[21] David J. Pearce and Paul H. J. Kelly. A dynamic
topological sort algorithm for directed acyclic graphs.
J. Exp. Algorithmics, 11, February 2007.

[22] Robert Tarjan. Depth first search and linear graph
algorithms. SIAM JOURNAL ON COMPUTING,
1(2), 1972.

[23] Mikkel Thorup. On RAM priority queues. SIAM J.
Comput., 30(1):86–109, 2000.

[24] Christian Wulff-Nilsen. Faster deterministic fully-
dynamic graph connectivity. In Proc. of 24th SODA,
pages 1757–1769, 2013.

[25] Jack Zito, Heraldo Memelli, Kyle G. Horn, Irene C.
Solomon, and Larry D. Wittie. Application of a
”staggered walk” algorithm for generating large-scale
morphological neuronal networks. Comp. Int. and
Neurosc., 2012:876357:1–876357:8, 2012.

